Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771531

RESUMO

Abiotic environmental stresses can alter plant metabolism, leading to inhibition or promotion of secondary metabolites. Although the crucial roles of these compounds in plant acclimation and defense are well known, their response to climate change is poorly understood. As the effects of climate change have been increasing, their regulatory aspects on plant secondary metabolism becomes increasingly important. Effects of individual climate change components, including high temperature, elevated carbon dioxide, drought stress, enhanced ultraviolet-B radiation, and their interactions on secondary metabolites, such as phenolics, terpenes, and alkaloids, continue to be studied as evidence mounting. It is important to understand those aspects of secondary metabolites that shape the success of certain plants in the future. This review aims to present and synthesize recent advances in the effects of climate change on secondary metabolism, delving from the molecular aspects to the organismal effects of an increased or decreased concentration of these compounds. A thorough analysis of the current knowledge about the effects of climate change components on plant secondary metabolites should provide us with the required information regarding plant performance under climate change conditions. Further studies should provide more insight into the understanding of multiple environmental factors effects on plant secondary metabolites.

2.
Plant Physiol Biochem ; 157: 160-168, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33120108

RESUMO

Earlier studies have shown that plants produce methane (CH4) under aerobic conditions, and that this emission is not microbial in nature. However, the precursors of aerobic CH4 remain under debate, and the combined effects of environmental factors on plant-derived CH4 requires further attention. The objective of this study was to determine the interactive effects of temperature and light intensity on CH4 and other relevant plant parameters in canola (Brassica napus L.). Plants were grown under two temperature regimes (22/18 °C and 28/24 °C, 16 h light/8 h dark) and two light intensities (300 and 600 µmol photons m-2 s-1) for 21 days after one week of growth under 22/18 °C (16 h light/8 h dark). In this study, higher temperature had little effects on CH4 emissions from plants, indicating the mitigating effects of higher light intensity. Higher light intensity, however, significantly decreased CH4, which was inversely related to plant dry mass. Higher light intensity decreased stem height, leaf area ratio, chlorophyll, nitrogen balance index, leaf moisture, methionine (Met) and ethylene (C2H4), but increased specific leaf mass, photochemical quenching, flavonoids, epicuticular wax, lysine and tyrosine. The results revealed that increased CH4 emissions from plants could be related to changes in plant physiological activities, which portrayed themselves in increased C2H4 evolution, and methylated amino acids, such as Met. We conclude that higher light intensity reduces Met and, in turn, CH4 and C2H4 emissions, but lower light intensity enhances CH4 formation through cleavage of methyl group of amino acids by reactive oxygen species, as previously suggested.


Assuntos
Brassica napus/metabolismo , Luz , Metano/metabolismo , Temperatura , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos da radiação
3.
Planta ; 250(4): 1191-1214, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31190116

RESUMO

MAIN CONCLUSION: This study revealed that elevated carbon dioxide increases Arabidopsis tolerance to higher temperature and drought stress by mitigating oxidative stress and improving water status of plants. Few studies have considered multiple aspects of plant responses to key components of global climate change, including higher temperature, elevated carbon dioxide (ECO2), and drought. Hence, their individual and combinatorial effects on plants need to be investigated in the context of understanding climate change impact on plant growth and development. We investigated the interactive effects of temperature, CO2, watering regime, and genotype on Arabidopsis thaliana (WT and ABA-insensitive mutant, abi1-1). Plants were grown in controlled-environment growth chambers under two temperature regimes (22/18 °C and 28/24 °C, 16 h light/8 h dark), two CO2 concentrations (400 and 700 µmol mol-1), and two watering regimes (well-watered and water-stressed) for 18 days. Plant growth, anatomical, physiological, molecular, and hormonal responses were determined. Our study provided valuable information about plant responses to the interactive effects of multiple environmental factors. We showed that drought and ECO2 had larger effects on plants than higher temperatures. ECO2 alleviated the detrimental effects of temperature and drought by mitigating oxidative stress and plant water status, and this positive effect was consistent across multiple response levels. The WT plants performed better than the abi1-1 plants; the former had higher rosette diameter, total dry mass, leaf and soil water potential, leaf moisture, proline, ethylene, trans-zeatin, isopentyladenine, and cis-zeatin riboside than the latter. The water-stressed plants of both genotypes accumulated more abscisic acid (ABA) than the well-watered plants; however, higher temperatures decreased the ability of WT plants to produce ABA in response to drought. We conclude that drought strongly, while higher temperature to a lesser extent, affects Arabidopsis seedlings, and ECO2 reduces the adverse effects of these stressors more efficiently in the WT plants than in the abi1-1 plants. Findings from this study can be extrapolated to other plant species that share similar characteristics and/or family with Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mudança Climática , Secas , Temperatura Alta , Estresse Oxidativo , Fosfoproteínas Fosfatases/genética , Solo/química , Estresse Fisiológico , Água/fisiologia
4.
Plant Physiol Biochem ; 139: 715-723, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31055132

RESUMO

Many studies have investigated the effects of one or two environmental factors on methane (CH4) emissions from plants at a single growth stage, but the impact that multiple co-occurring stress factors may have on emissions at different growth stages has rarely been studied. The objective of this study was to examine the effects of temperature, ultraviolet-B (UVB) radiation, and watering regime on CH4 emissions and some relevant physiological characteristics of pea (Pisum sativum L. cv. 237 J Sundance) plants at three growth stages. We grew plants under two temperature regimes (22/18 °C and 28/24 °C; 16 h light/8 h dark), two UVB levels [0 and 5 kJ m-2 d-1] and two watering regimes (well-watered, watering plants to field capacity, and water-stressed, watering plants at wilting point). Measurements were then taken after 10, 20, and 30 days of growth under experimental conditions, following seven days of initial growth under 22/18 °C. Higher temperatures, UVB5, and water stress adversely affected photosynthesis and chlorophyll fluorescence, but increased CH4 emissions, which decreased with increased plant age. Also, interaction of higher temperatures and UVB5 reversed the pattern of CH4 emissions at growth stages, compared to that of other treatments. We conclude that CH4 emission decreases with plant age, and it is affected by stress factors through changes in physiological activities of plants.


Assuntos
Metano/metabolismo , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Desidratação/metabolismo , Pisum sativum/efeitos da radiação , Temperatura , Raios Ultravioleta
5.
Plants (Basel) ; 8(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875945

RESUMO

Developmental initiation of plant vascular tissue, including xylem and phloem, from the vascular cambium depends on environmental factors, such as temperature and precipitation. Proper formation of vascular tissue is critical for the transpiration stream, along with photosynthesis as a whole. While effects of individual environmental factors on the transpiration stream are well studied, interactive effects of multiple stress factors are underrepresented. As expected, climate change will result in plants experiencing multiple co-occurring environmental stress factors, which require further studies. Also, the effects of the main climate change components (carbon dioxide, temperature, and drought) on vascular cambium are not well understood. This review aims at synthesizing current knowledge regarding the effects of the main climate change components on the initiation and differentiation of vascular cambium, the transpiration stream, and photosynthesis. We predict that combined environmental factors will result in increased diameter and density of xylem vessels or tracheids in the absence of water stress. However, drought may decrease the density of xylem vessels or tracheids. All interactive combinations are expected to increase vascular cell wall thickness, and therefore increase carbon allocation to these tissues. A comprehensive study of the effects of multiple environmental factors on plant vascular tissue and water regulation should help us understand plant responses to climate change.

6.
J Plant Physiol ; 233: 12-19, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30576928

RESUMO

It is now well documented that plants produce methane (CH4) under aerobic conditions. However, the nature of methane production in plants and all the potential precursors and environmental factors that can be involved in the process are not fully understood. Earlier studies have suggested several chemical compounds, including the amino acid methionine, as precursors of aerobic methane in plants, but none have explored other amino acids as potential precursors or blue light as a driving force of methane emission. We examined the effects of blue light, and the promoter or inhibitor of endogenous ethylene on methane and ethylene emissions, amino acids, and some plant physiological parameters in canola (Brassica napus). Plants were grown under four light conditions: no supplemental blue light, and low, medium, or high blue light, and exposed to three chemical treatments: no chemical application, ethylene promoter (kinetin), or ethylene inhibitor (silver nitrate). Regardless of chemical treatment, blue light significantly increased methane emission, which was accompanied by decreased plant biomass, gas exchange, and flavonoids, but by increased wax, and most amino acids. This study revealed that blue light drives aerobic methane emission from plants by releasing of methyl group from a number of amino acids, and that the methane production in plants may have several pathways.


Assuntos
Luz , Metano/biossíntese , Óleo de Brassica napus/efeitos da radiação , Aerobiose/efeitos da radiação , Aminoácidos/metabolismo , Etilenos/agonistas , Etilenos/antagonistas & inibidores , Etilenos/metabolismo , Flavonoides/metabolismo , Cinetina/farmacologia , Óleo de Brassica napus/metabolismo , Nitrato de Prata/farmacologia
7.
Physiol Plant ; 159(3): 313-328, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27717171

RESUMO

Studies have been mounting in support of the finding that plants release aerobic methane (CH4 ), and that these emissions are increased by both short-term and long-term environmental stress. It remains unknown whether or not they are affected by variation in light quantity and quality, whether emissions change over time, and whether they are influenced by physiological parameters. Light is the primary energy source of plants, and therefore an important regulator of plant growth and development. Both shade-intolerant sunflower and shade-tolerant chrysanthemum were investigated for the release of aerobic CH4 emissions, using either low or high light intensity, and varying light quality, including control, low or normal red:far-red ratio (R:FR), and low or high levels of blue, to discern the relationship between light and CH4 emissions. It was found that low levels of light act as an environmental stress, facilitating CH4 release from both species. R:FR and blue lights increased emissions under low light, but the results varied with species, providing evidence that both light quantity and quality regulate CH4 emissions. Emission rates of 6.79-41.13 ng g-1 DW h-1 and 18.53-180.25 ng g-1 DW h-1 were observed for sunflower and chrysanthemum, respectively. Moreover, emissions decreased with age as plants acclimated to environmental conditions. Since effects were similar in both species, there may be a common trend among a number of shade-tolerant and shade-intolerant species. Light quantity and quality are influenced by factors including cloud covering, so it is important to know how plants will be affected in the context of aerobic CH4 emissions.


Assuntos
Chrysanthemum/efeitos da radiação , Helianthus/efeitos da radiação , Metano/metabolismo , Clorofila/metabolismo , Chrysanthemum/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação
8.
J Photochem Photobiol B ; 166: 193-201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27960115

RESUMO

There is no information on variation of methane (CH4) emissions from plant organs exposed to multiple environmental factors. We investigated the interactive effects of temperature and ultraviolet-B (UVB) radiation on CH4 emissions from different organs of pea (Pisum sativum L. var. UT234 Lincoln). Plants were grown hydroponically under two temperatures (22/18°C and 28/24°C; 16h day/8h night) and two levels of UVB radiation [0 and 5kJm-2 d-1] in controlled-environment growth chambers for ten days, after two weeks of initial growth under ambient temperatures. Methane emission, dry mass, growth index, electrical conductivity (EC), pectin, total chlorophyll content, gas exchange and flavonoids were measured in the appropriate plant organs - leaf, stem and root. Higher temperatures increased CH4 emissions, leaf mass ratio, and shoot: root mass ratio. Neither temperature nor UVB had significant effects on leaf, stem, root and total dry mass, EC, pectin, total chlorophyll, as well as specific leaf mass. Among plant organs, there were differences in CH4, EC, pectin and total chlorophyll. Methane and EC were highest for the stem and lowest for the leaf; leaf had highest, but stem had lowest, pectin content; total chlorophyll was highest in the leaf but lowest in the root. Higher temperatures decreased leaf flavonoids, net carbon dioxide assimilation, and water use efficiency. Overall, environmental stressors increased aerobic CH4 emission rates, which varied with plant organs.


Assuntos
Hidroponia , Metano/metabolismo , Pisum sativum/metabolismo , Temperatura , Raios Ultravioleta , Pisum sativum/crescimento & desenvolvimento
9.
Plant Signal Behav ; 9(10): e970095, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482797

RESUMO

Aerobic methane (CH4) emission from plant vegetative parts has been confirmed by many studies. However, the origin of aerobic CH4 from plants and its emission from reproductive parts have not been well documented. We determined the effects of developmental stages (early, mid, late) and incubation conditions (darkness, dim light, bright light) on CH4 emissions from stinkweed (Thlaspi arvense) capsules. We found that CH4 emissions from capsules varied with developmental stage and incubation light. Methane emission was highest for the late harvested capsules and for those incubated under lower (dim) light condition. Our results also showed a significant negative correlation between CH4 emission and capsule moisture content. We conclude that CH4 emissions vary with capsule age and diurnal light environment.


Assuntos
Metano/metabolismo , Thlaspi/metabolismo , Aerobiose , Umidade , Luz , Temperatura , Thlaspi/crescimento & desenvolvimento , Thlaspi/efeitos da radiação
10.
Funct Plant Biol ; 38(2): 97-105, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480866

RESUMO

Recent studies using single environmental variables show that under aerobic conditions terrestrial plants can emit methane (CH4). However, the effects of multiple environmental factors - as components of global climate change - on aerobic CH4 emissions have been little studied. We examined the combined effects of temperature, carbon dioxide (CO2) and watering regime on CH4 emissions from six commonly cultivated crop species: faba bean, sunflower, pea, canola, barley and wheat. Plants were grown from seeds in controlled-environment growth chambers under two temperature regimes (24°C day/20°C night and 30°C day/26°C night), two CO2 concentrations (380 and 760µmolmol-1) and two watering regimes (well watered and water stressed). Plants were grown first under 24/20°C for 1 week from sowing, and then placed under experimental conditions for a further week. After the specified time, plant growth, gas exchange and CH4 emission rates were determined. Our results revealed that higher temperature and water stress significantly enhance CH4 emissions from plants, whereas elevated CO2 had the opposite effect and partially reverses the promotive effects of these factors. We suggest that the despite the mitigating effects of rising atmospheric CO2, CH4 emission may be higher in the face of ongoing global climate change in warmer and drier environments.

11.
Physiol Plant ; 137(2): 139-47, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19678898

RESUMO

We examined the effects of temperature, ultraviolet-B (UVB) radiation and watering regime on aerobic methane (CH(4)) emission from six crops-faba bean, sunflower, pea, canola, barley and wheat. Plants were grown in controlled-environment growth chambers under two temperature regimes (24/20 and 30/26 degrees C), three levels of UVB radiation [0 (zero), 5 (ambient) and 10 (enhanced) kJ m(-2) d(-1)] and two watering regimes (well watered and water stressed). A gas chromatograph with a flame ionization detector was used to measure CH(4) emission rates [ng g(-1) dry weight (DW) h(-1)] from detached fresh leaves of each species and attached leaves of pea plants. Plant growth [stem height, leaf area (LA) and aboveground dry matter (AG biomass)] and gas exchange [net CO(2) assimilation (A(N)), transpiration (E) and water use efficiency (WUE)] were also determined. We found that higher temperature, water stress and UVB radiation at the zero and enhanced levels significantly enhanced CH(4) emissions. Crop species varied in CH(4) emission, which was highest for pea and lowest for barley. Higher temperature and water stress reduced all growth parameters, whereas ambient and enhanced UVB decreased stem height but increased LA and AG biomass. Higher temperature decreased A(N) and WUE but increased E, whereas water stress decreased A(N) but increased E and WUE. Zero and enhanced UVB reduced A(N) and E. Growth and gas exchange varied with species. Overall, CH(4) emission was negatively correlated with stem height and AG biomass. We conclude that CH(4) emissions may increase under climatic stress conditions and this extra source might contribute to the 'greenhouse effect'.


Assuntos
Produtos Agrícolas/metabolismo , Desidratação , Metano/metabolismo , Temperatura , Raios Ultravioleta , Biomassa , Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
12.
J Chem Ecol ; 29(11): 2425-38, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682524

RESUMO

Cypsela dormancy in Scotch thistle (Onopordum acanthium) may be affected by the presence of chemical inhibitors. To investigate this phenomenon, a leachate from O. acanthium cypselas was tested for its ability to inhibit germination of the cypselas from which it was derived (i.e., autoinhibition). Leachates varied in their degree of autoinhibition, depending on the cypsela population from which they were prepared. Overall, removal of leachate from a group of O. acanthium cypselas increased their germinability. Using lettuce (Lactuca sativa) cypselas as an indicator species, bioactivity-guided fractionation was used to isolate a water-soluble, para-substituted benzamide from O. acanthium cypselas, which caused germination inhibition. Various chromatographic, spectroscopic, and spectrometric techniques were applied to the characterization of the bioactive compound.


Assuntos
Germinação/fisiologia , Onopordum/química , Onopordum/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Bioensaio , Lactuca/crescimento & desenvolvimento , Extratos Vegetais/isolamento & purificação , Sementes , Solubilidade
13.
New Phytol ; 159(1): 263-278, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873667

RESUMO

• Although Scotch thistle (Onopordum acanthium) is known to have cypselas whose dormancy is affected by maturation temperature, a detailed study of plant development, cypsela structure and germination responses after maturing under contrasting temperatures has not been done. • Plants were grown under high and low temperature regimes in glasshouses and under field conditions in 2000 and 2001. Each year, phenological and developmental characteristics of plants were monitored and cypselas were collected twice. Cypselas were germinated fresh and after 4 months after-ripening, and also examined for surface and internal characteristics by scanning electron microscopy. • Plants from the lower temperature regime were taller, had thicker shoots, larger leaves, larger capitula that appeared sooner, and more, slower-to-mature and larger cypselas with smoother surfaces, thicker coats and higher moisture contents. However, their germination percentages were lower. After after-ripening most cypselas germinated. • In both years, consistent and significant differences in germination patterns and structural characteristics between cypselas from the two temperature regimes indicated that both pre- and postdispersal factors were involved in regulating the germinability of O. acanthium cypselas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...