Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(6): 1750-1764, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38482029

RESUMO

Nano-carbon-reinforced polymer composites have gained much consideration in functional applications due to their attractive mechanical strength and cost-effectiveness. The surface chemistry and associated mechanical strength of carbon nanotubes (CNTs), graphene, and other carbon derivative-based nanocomposites are well understood. While CQDs are considered emerging carbon derivatives, their surface chemistry, unique physio-chemical properties, and dispersion behavior in polymers are yet to be explored. Therefore, in this work, CQDs with different structures were synthesized from lemon pulp and urea, and their rheology and mechanical strength were studied in the PVA matrix. The surface chemistry and structure of CQDs were controlled using different solvents and reaction temperatures, respectively. CQDs possessed a circular shape, with a size of <10 nm, having a suitable carbon core and functional groups, as confirmed by TEM and FTIR spectroscopy. The dynamic viscosity and particle size of PVA/CQDs films peaked at 4% inclusion due to the maximum crosslinking of U-CQDs with reinforcement at 180 °C. Compared with pure PVA, the optimized composite showed an 80% larger particle size with 67% better tensile strength at 4% U-CQDs concentration. In addition to enhanced mechanical strength, CQDs exhibited antibacterial activity in composites. These CQDs-reinforced PVA composites may be suitable for different functional textile applications (shape memory composites and photo-active textiles).

2.
RSC Adv ; 14(9): 5959-5974, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362070

RESUMO

Heavy metal contamination in water is a serious environmental issue due to the toxicity of metals like lead. This study developed zeolite and multi-walled carbon nanotube (MWCNT) incorporated polyacrylonitrile (PAN) nanofibers via needleless electrospinning and examined their potential for lead ion adsorption from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) and artificial neural network (ANN) modeling approaches. The adsorbent displayed efficient lead removal of 84.75% under optimum conditions (adsorbent dose (2.21 g), adsorption time (207 min), temperature (48 °C), and initial concentration (62 ppm)). Kinetic studies revealed that the adsorption followed pseudo-first-order kinetics governed by interparticle diffusion. Isotherm analysis indicated Langmuir monolayer adsorption with improved 5.90 mg g-1 capacity compared to pristine PAN nanofibers. Thermodynamic parameters suggested the adsorption was spontaneous and endothermic. This work demonstrates the promise of electrospun zeolite/MWCNT nanofibers as adsorbents for removing lead from wastewater.

3.
Heliyon ; 9(9): e20007, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809450

RESUMO

Dual-core yarns, containing two filaments within the core of the yarn, have gained increasing commercial and research interest recently, especially in denim manufacturing. The use of multi-components in dual-core yarns allows for tailoring the properties of the yarn and denim fabric. The type of filaments and fibers and their surface characteristics play a role in fiber-to-fiber cohesion within yarn structure. However, little has been reported regarding the effect of different filaments on the properties of dual-core yarns. The objective of this study was to investigate the effect of three different filaments, T400, polyester flat (PET flat) and polyester textured (PET textured) as well as two yarn structures, siro versus non-siro, on tensile, elastic and other properties of dual-core yarns at same twist level and linear density of the yarn. The results showed that the siro spun dual-core yarn containing T400 exhibited 25% higher tenacity compared with yarns containing other filaments. However, the plastic deformation of the yarn containing PET flat filament, having a higher initial modulus, was at a relatively lower level compared with T400 and PET textured. Overall, the siro yarn structure showed lower imperfections and higher tenacity compared with the non-siro yarn structure. The dual-core yarn containing T400 showed a higher level of moisture wicking compared with other filaments which can add to the comfort properties but a similar hairiness level. The findings of this study suggest that the use of a filament with a higher initial modulus can improve the stretch and recovery behavior of the dual-core yarns.

4.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049240

RESUMO

Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.

5.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987136

RESUMO

Nowadays, synthetic polymers are used in medical applications due to their special biodegradable, biocompatible, hydrophilic, and non-toxic properties. The materials, which can be used for wound dressing fabrication with controlled drug release profile, are the need of the time. The main aim of this study was to develop and characterize polyvinyl alcohol/polycaprolactone (PVA/PCL) fibres containing a model drug. A dope solution comprising PVA/PCL with the drug was extruded into a coagulation bath and became solidified. The developed PVA/PCL fibres were then rinsed and dried. These fibres were tested for Fourier transform infrared spectroscopy, linear density, topographic analysis, tensile properties, liquid absorption, swelling behaviour, degradation, antimicrobial activity, and drug release profile for improved and better healing of the wound. From the results, it was concluded that PVA/PCL fibres containing a model drug can be produced by using the wet spinning technique and have respectable tensile properties; adequate liquid absorption, swelling %, and degradation %; and good antimicrobial activity with the controlled drug release profile of the model drug for wound dressing applications.

6.
Membranes (Basel) ; 13(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36837659

RESUMO

Nanofiber-based facial masks have attracted the attention of modern cosmetic applications due to their controlled drug release, biocompatibility, and better efficiency. In this work, Azadirachta indica extract (AI) incorporated electrospun polyvinyl alcohol (PVA) nanofiber membrane was prepared to obtain a sustainable and hydrophilic facial mask. The electrospun AI incorporated PVA nanofiber membranes were characterized by scanning electron microscope, Ultraviolet-visible spectroscopy (UV-Vis) drug release, water absorption analysis, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, and antibacterial activity (qualitative and quantitative) at different PVA and AI concentrations. The optimized nanofiber of 376 ± 75 nm diameter was obtained at 8 wt/wt% PVA concentration and 100% AI extract. The AI nanoparticles of size range 50~250 nm in the extract were examined through a zeta sizer. The water absorption rate of ~660% and 17.24° water contact angle shows good hydrophilic nature and water absorbency of the nanofiber membrane. The UV-Vis also analyzed fast drug release of >70% in 5 min. The prepared membrane also exhibits 99.9% antibacterial activity against Staphylococcus aureus and has 79% antioxidant activity. Moreover, the membrane also had good mechanical properties (tensile strength 1.67 N, elongation 48%) and breathability (air permeability 15.24 mm/s). AI-incorporated nanofiber membrane can effectively be used for facial mask application.

7.
PLoS One ; 17(12): e0279101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520952

RESUMO

Internal Combustion (IC) engines are prevalent in the process sector, and maintaining sufficient Air-Fuel Ratio (AFR) regulation in their fuel system is crucial for enhanced engine performance, fuel economy, and environmental safety. Faults in the AFR system's sensors cause the engine to shut down, hence, fault tolerance is essential. In order to avoid engine shutdown, this paper offers a novel Active Fault-Tolerant Control System (AFTCS) for air-fuel ratio control of an Internal Combustion (IC) engine in a process plant. In the Fault Detection and Isolation (FDI) unit, the proposed AFTCS uses a nonlinear regression-based observer model for analytical redundancy. The suggested system was simulated in the MATLAB / Simulink environment. The proposed system was tested at two different speeds (300 r/min and 600 r/min) and the results show that the system's response is within the acceptable bound without compromising the stability. The findings also demonstrate the higher fault tolerance capability for sensor defects of the AFR control system, particularly for the MAP sensor (at 300 r/min) in terms of reduced oscillatory response in comparison to the current literature. Compared to the linear regression-based and Genetic Algorithm (GA) based model, the nonlinear regression-based model results in a more accurate estimation of the faulty sensors. The proposed model is also efficient in terms of computation power and response time.


Assuntos
Tolerância Imunológica , Registros , Modelos Lineares , Tolerância a Medicamentos , Tempo de Reação
8.
Membranes (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557137

RESUMO

Sweat is a natural body excretion produced by skin glands, and the body cools itself by releasing salty sweat. Wetness in the underarms and feet for long durations causes itchiness and an unpleasant smell. Skin-friendly reusable sweat pads could be used to absorb sweat. Transportation of moisture and functionality is the current challenge that many researchers are working on. This study aims to develop a functional and breathable sweat pad with antimicrobial and quick drying performance. Three layered functional sweat pads (FSP) are prepared in which the inner layer is made of an optimized needle-punched coolmax/polypropylene nonwoven blend. This layer is then dipped in antimicrobial ZnO solution (2, 4, and 6 wt.%), and super absorbent polymer (SAP) is embedded, and this is called a functional nonwoven (FNW1) sheet. Electrospun nanofiber-based nanomembranes of polyamide-6 are optimized for bead-free fibers. They are used as a middle layer to enhance the pad's functionality, and the third layer is again made of needle-punched optimized coolmax/polypropylene nonwoven sheets. A simple nonwoven-based sweat pad (SSP) is also prepared for comparison purposes. Nonwoven sheets are optimized based on better comfort properties, including air/water vapor permeability and moisture management (MMT). Nonwoven webs having a higher proportion of coolmax show better air permeability and moisture transfer from the inner to the outer layer. Antimicrobial activity of the functional nonwoven layer showed 8 mm of bacterial growth, but SSP and FSP showed only 6 mm of growth against Staphylococcus aureus. FSP showed superior comfort and antibacterial properties. This study could be a footstone toward highly functional sweat pads with remarkable comfort properties.

9.
Membranes (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422140

RESUMO

Synthetic antibiotics have captured the market in recent years, but the side effects of these products are life-threatening. In recent times, researchers have focused their research on natural-based products such as natural herbal oils, which are eco-friendly, biocompatible, biodegradable, and antibacterial. In this study, polyethylene oxide (PEO) and aqueous ginger extract (GE) were electrospun to produce novel antibacterial nanomembrane sheets as a function of PEO and GE concentrations. A GE average particle size of 91.16 nm was achieved with an extensive filtration process, inferring their incorporation in the PEO nanofibres. The presence of the GE was confirmed by Fourier transform infrared spectroscopy (FTIR) through peaks of phenol and aromatic groups. The viscoelastic properties of PEO/GE solutions were analysed in terms of PEO and GE concentrations. Increasing PEO and GE concentrations increased the solution's viscosity. The dynamic viscosity of 3% was not changed with increasing shear rate, indicating Newtonian fluid behaviour. The dynamic viscosity of 4 and 5 wt% PEO/GE solutions containing 10% GE increased exponentially compared to 3 wt%. In addition, the shear thinning behaviour was observed over a frequency range of 0.05 to 100 rad/s. Scanning Electron Microscopy (SEM) analysis also specified an increase in the nanofibre's diameter with increasing PEO concentration, while SEM images displayed smooth morphology with beadless nanofibres at different PEO/GE concentrations. In addition, PEO/GE nanomembranes inhibited the growth of Staphylococcus aureus, as presented by qualitative antibacterial results. The extent of PEO/GE nanomembrane's antibacterial activity was further investigated by the agar dilution method, which inhibited the 98.79% Staphylococcus aureus population at 30% GE concentration.

10.
Membranes (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422150

RESUMO

Textile-supported nanocomposite as a scaffold has been extensively used in the medical field, mainly to give support to weak or harmed tissues. However, there are some challenges in fabricating the nanofiber/textile composite, i.e., suitable porous structure with defined pore size, less skin contact area, biocompatibility, and availability of degradable materials. Herein, polyamide-6 (PA) nanofibers were synthesized using needleless electrospinning with the toothed wheel as a spinneret. The electrospinning process was optimized using different process and solution parameters. In the next phase, optimized PA nanofiber membranes of optimum fiber diameter with uniform distribution and thickness were used in making nanofiber membrane-textile composite. Different textile fabrics (woven, non-woven, knitted) were developed. The optimized nanofiber membranes were combined with non-woven, woven, and knitted fabrics to make fabric-supported nanocomposite. The nanofiber/fabric composites were compared with available market woven and knitted meshes for mechanical properties, morphology, structure, and chemical interaction analysis. It was found that the tear strength of the nanofiber/woven composite was three times higher than market woven mesh, and the nanofiber/knitted composite was 2.5 times higher than market knitted mesh. The developed composite structures with woven and knitted fabric exhibited improved bursting strength (613.1 and 751.1 Kpa), tensile strength (195.76 and 227.85 N), and puncture resistance (68.76 and 57.47 N), respectively, than market available meshes. All these properties showed that PA nanofibers/textile structures could be utilized as a composite with multifunctional properties.

11.
Sensors (Basel) ; 22(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632272

RESUMO

Faults frequently occur in the sensors and actuators of process machines to cause shutdown and process interruption, thereby creating costly production loss. centrifugal compressors (CCs) are the most used equipment in process industries such as oil and gas, petrochemicals, and fertilizers. A compressor control system called an anti-surge control (ASC) system based on many critical sensors and actuators is used for the safe operation of CCs. In this paper, an advanced active fault-tolerant control system (AFTCS) has been proposed for sensor and actuator faults of the anti-surge control system of a centrifugal compressor. The AFTCS has been built with a dedicated fault detection and isolation (FDI) unit to detect and isolate the faulty part as well as replace the faulty value with the virtual redundant value from the observer model running in parallel with the other healthy sensors. The analytical redundancy is developed from the mathematical modeling of the sensors to provide estimated values to the controller in case the actual sensor fails. Dual hardware redundancy has been proposed for the anti-surge valve (ASV). The simulation results of the proposed Fault-tolerant control (FTC) for the ASC system in the experimentally validated CC HYSYS model reveal that the system continued to operate in the event of faults in the sensors and actuators maintaining system stability. The proposed FTC for the ASC system is novel in the literature and significant for the process industries to design a highly reliable compressor control system that would continue operation despite faults in the sensors and actuators, hence preventing costly production loss.

12.
Materials (Basel) ; 13(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887482

RESUMO

In the present condition of COVID-19, the demand for antimicrobial products such as face masks and surgical gowns has increased. Because of this increasing demand, there is a need to conduct a study on the development of antimicrobial material. Therefore, this study was conducted on the development of Aloe Vera and Polyvinyl Alcohol (AV/PVA) electrospun nanofibers. Four different fibers were developed by varying the concentrations of Aloe vera (0.5%, 1.5%, 2.5%, and 3%) while maintaining the concentration of PVA constant. The developed samples were subjected to different characterization techniques such as SEM, FTIR, XRD, TGA, and ICP studies. After that, the antimicrobial activity of the developed Aloe Vera/PVA electrospun nanofibers was checked against Gram-positive (Staphylococcus aureus) bacteria and Gram-negative (Escherichia coli) bacteria. The developed nanofibers had high profile antibacterial activity against both bacteria, but showed excellent results against S. aureus bacteria as compared with E. coli. These nanofibers have potential applications in the development of surgical gowns, gloves, etc.

13.
Carbohydr Polym ; 152: 19-25, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516245

RESUMO

Textile electrodes are highly desirable for wearable electronics as they offer light-weight, flexibility, cost effectiveness and ease of fabrication. Here, we propose the use of lyocell fabric as a flexible textile electrode because of its inherently super hydrophilic characteristics and increased moisture uptake. A highly concentrated colloidal solution of graphene oxide nanosheets (GONs) was coated on to lyocell fabric and was then reduced in to graphene nanosheets (GNs) using facile chemical reduction method. The proposed textile electrode has a very high surface conductivity with a very low value of surface resistance of only 40Ωsq(-1), importantly without use of any binding or adhesive material in the processing step. Atomic force spectroscopy (AFM) and Transmission electron microscopy (TEM) were conducted to study the topographical properties and sheet exfoliation of prepared GONs. The surface morphology, structural characterization and thermal stability of the fabricated textile electrode were studied by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), X ray photon spectroscopy (XPS), Raman spectroscopy, Wide angle X ray diffraction spectroscopy (WAXD) and Thermogravimetric analysis (TGA) respectively. These results suggest that the GONs is effectively adhered on to the lyocell fabric and the conversion of GONs in to GNs by chemical reduction has no adverse effect on the crystalline structure of textile substrate. The prepared graphene coated conductive lyocell fabric was found stable in water and electrolyte solution and it maintained nearly same surface electrical conductivity at various bending angles. The electrical resistance results suggest that this lyocell based textile electrode (L-GNs) is a promising candidate for flexible and wearable electronics and energy harvesting devices.

14.
Small ; 12(33): 4508-20, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27432775

RESUMO

Different nanostructures of TiO2 play an important role in the photocatalytic and photoelectronic applications. TiO2 nanotubes (TNTs) have received increasing attention for these applications due to their unique physicochemical properties. Focusing on highly functional TNTs (HF-TNTs) for photocatalytic and photoelectronic applications, this study describes the facile hydrothermal synthesis of HF-TNTs by using commercial and cheaper materials for cost-effective manufacturing. To prove the functionality and applicability, these TNTs are used as scattering structure in dye-sensitized solar cells (DSSCs). Photocatalytic, optical, Brunauer-Emmett-Teller (BET), electrochemical impedance spectrum, incident-photon-to-current efficiency, and intensity-modulated photocurrent spectroscopy/intensity-modulated photovoltage spectroscopy characterizations are proving the functionality of HF-TNTs for DSSCs. HF-TNTs show 50% higher photocatalytic degradation rate and also 68% higher dye loading ability than conventional TNTs (C-TNTs). The DSSCs having HF-TNT and its composite-based multifunctional overlayer show effective light absorption, outstanding light scattering, lower interfacial resistance, longer electron lifetime, rapid electron transfer, and improved diffusion length, and consequently, J SC , quantum efficiency, and record photoconversion efficiency of 10.1% using commercial N-719 dye is achieved, for 1D-based DSSCs. These new and highly functional TNTs will be a concrete fundamental background toward the development of more functional applications in fuel cells, dye-sensitized solar cells, Li-ion batteries, photocatalysis process, ion-exchange/adsorption process, and photoelectrochemical devices.

15.
ACS Appl Mater Interfaces ; 8(11): 7471-82, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26911208

RESUMO

Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

16.
Carbohydr Polym ; 130: 299-306, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26076630

RESUMO

Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.


Assuntos
Cátions/química , Condutividade Elétrica , Gossypium/química , Grafite/química , Óxidos/química , Processos Fotoquímicos , Têxteis , Adsorção , Animais , Bovinos , Eletrodos , Teste de Materiais , Soroalbumina Bovina/química , Propriedades de Superfície , Resistência à Tração
17.
Phys Chem Chem Phys ; 17(19): 12957-69, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25912056

RESUMO

Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

18.
J Nanosci Nanotechnol ; 14(12): 9377-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971069

RESUMO

Dye-sensitized solar cell (DSSC) is an attractive renewable energy technology currently under intense investigation. Electrolyte plays an important role in the photovoltaic performance of the DSSCs and many efforts have been contributed to study different kinds of electrolytes with various characteristics such as liquid electrolytes, polymer electrolytes and so on. In this study, DSSC is developed by using quasi-solid electrolyte and a novel procedure is adopted for filling this electrolyte. The quasi-solid-state electrolyte was prepared by mixing Poly ethylene oxide (PEO) and bismaleimide together and constitution was taken as PEO (15 wt%) at various bismaleimide concentrations (1, 3, 5 wt%). The novel procedure of filling electrolyte consists of three major steps (first step: filling liquid electrolyte, second step: vaporization of liquid electrolyte, third step: refilling quasi-solid-state electrolyte). The electrochemical and photovoltaic performances of DSSCs with these electrolytes were also investigated. The electrochemical impedance spectroscopy (EIS) indicated that TiO2/Dye/electrolyte impedance is reduced and electron lifetime is increased, and consequently efficiency of cell has been improved after using this novel procedure. The photovoltaic power conversion efficiency of 6.39% has been achieved under AM 1.5 simulated sunlight (100 W/cm2) through this novel procedure and by using specified blend of polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...