Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 31(8): 794-816, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37525966

RESUMO

One of the most common cancers that occur in females is breast cancer. Despite the significant leaps and bounds that have been made in treatment of breast cancer, the disease remains one of the leading causes of death among women and a major public health challenge. The therapeutic efficacy of chemotherapeutics is hindered by chemoresistance and toxicity. Nano-based lipid drug delivery systems offer controlled drug release, nanometric size and site-specific targeting. Breast cancer treatment includes surgery, chemotherapy and radiotherapy. Despite this, no single method of treatment for the condition is currently effective due to cancer stem cell metastasis and chemo-resistance. Therefore, the employment of nanocarrier systems is necessary in order to target breast cancer stem cells. This article addresses breast cancer treatment options, including modern treatment procedures such as chemotherapy, etc. and some innovative therapeutic options highlighting the role of lipidic nanocarriers loaded with chemotherapeutic drugs such as nanoemulsion, solid-lipid nanoparticles, nanostructured lipid carriers and liposomes, and their investigations have demonstrated that they can limit cancer cell growth, reduce the risk of recurrence, as well as minimise post-chemotherapy metastasis. This article also explores FDA-approved lipid-based nanocarriers, commercially available formulations, and ligand-based formulations that are being considered for further research.

2.
Pharmaceutics ; 14(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336030

RESUMO

In the current research, a thymoquinone-enriched naringenin (NGN)-loaded nanostructured lipid carrier (NLC) was developed and delivered via the nasal route for depression. Thymoquinone (TQ) oil was used as the liquid lipid and provided synergistic effects. A TQ- and NGN-enriched NLC was developed via the ultrasonication technique and optimized using a central composite rotatable design (CCRD). The optimized NLC exhibited the following properties: droplet size, 84.17 to 86.71 nm; PDI, 0.258 to 0.271; zeta potential, -8.15 to -8.21 mV; and % EE, 87.58 to 88.21%. The in vitro drug release profile showed the supremacy of the TQ-NGN-NLC in comparison to the NGN suspension, with a cumulative drug release of 82.42 ± 1.88% from the NLC and 38.20 ± 0.82% from the drug suspension. Ex vivo permeation study displayed a 2.21-fold increase in nasal permeation of NGN from the NLC compared to the NGN suspension. DPPH study showed the better antioxidant potential of the TQ-NGN-NLC in comparison to NGN alone due to the synergistic effect of NGN and TQ oil. CLSM images revealed deeper permeation of the NGN-NLC (39.9 µm) through the nasal mucosa in comparison to the NGN suspension (20 µm). Pharmacodynamic studies, such as the forced swim test and the locomotor activity test, were assessed in the depressed rat model, which revealed the remarkable antidepressant effect of the TQ-NGN-NLC in comparison to the NGN suspension and the marketed formulation. The results signify the potential of the TQ-enriched NGN-NLC in enhancing brain delivery and the therapeutic effect of NGN for depression treatment.

3.
Front Bioeng Biotechnol ; 10: 788128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186901

RESUMO

The delivery of therapeutic molecules to the brain remains an unsolved problem to the researchers due to the existence of the blood-brain barrier (BBB), which halts the entry of unwanted substances to the brain. Central nervous system (CNS) disorders, mainly Parkinson's disease, Alzheimer's disease, schizophrenia, brain tumors, and stroke, are highly prevalent globally and are a growing concern for researchers due to restricting the delivery of pharmaceutical drugs to the brain. So effective treatment modalities are essential to combat the growing epidemic of CNS diseases. Recently, the growing attention in the field of nanotechnology has gained the faith of researchers for the delivery of therapeutics to the brain by targeting them to the specific target site. Polymeric nanoparticles (PNPs) emerge out to be an instrumental approach in drug targeting to the brain by overcoming the physiological barrier, biomedical barrier, and BBB. Preclinical discovery has shown the tremendous potential and versatility of PNPs in encapsulating several drugs and their targeting to the deepest regions of the brain, thus improving therapeutic intervention of CNS disorders. The current review will summarize advances in the development of PNPs for targeting therapeutics to the brain and the functional and molecular effects obtained in the preclinical model of most common CNS diseases. The advancement of PNPs in clinical practice and their prospect in brain targeting will also be discussed briefly.

4.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960948

RESUMO

This manuscript aims to provide the latest update on polymeric nanoparticle drug delivery system for breast cancer treatment after 2015 and how research-oriented it is based on the available research data. Therefore, the authors have chosen breast cancer which is the most frequent and common reason for mortality in women worldwide. The first-line treatment for breast cancer treatment is chemotherapy, apart from surgery, radiation and hormonal therapy. Chemotherapy is associated with lesser therapeutics and undesirable side effects and hence. In addition, drug resistance affects the therapeutic dose to the target site. Although various nano-based formulations have been developed for effective treatment, the polymeric nanoparticles effectively avoid the lacunae of conventional chemotherapy. There has been an effort made to understand the chemotherapy drugs and their conventional formulation-related problems for better targeting and effective drug delivery for breast cancer treatment. Thus, the polymeric nanoparticles as a strategy overcome the associated problems with resulting dose reduction, enhanced bioavailability, reduced side effects, etc. This present review has compiled the research reports published from 2015 to 2021 from different databases, such as PubMed, Google Scholar, ScienceDirect, which are related to breast cancer treatment in which the drug delivery of numerous chemotherapeutic agents alone or in combination, including phytoconstituents formulated into various polymer-based nanoparticles.

5.
Int J Pharm ; 609: 121131, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34563617

RESUMO

In the present study, SEL was loaded in a lipid nanocarrier (LNC) formulation with a P-gp pump inhibitor i.e., Quercetin (QUR) for improving the bioavailability of the SEL in the brain via the oral route. SEL-QUR LNC was formulated using modified emulsiosonication method and optimized using central composite rotatable design (CCRD) design. The results showed that optimized SEL-QUR LNC formulation was spherical with globule size, polydispersity index, entrapment efficiency and zeta potential within the range of 92.46-95.34 nm, 0.239-0.248, 88.94-91.26%, and -6.21 to -7.75 mV respectively. A 4-fold and 6-fold increase was observed in the permeation of SEL from SEL-QUR LNC across the gut sac in comparison with SEL-QUR and SEL suspensions respectively. CLSM images showed 2-fold deeper permeation of SEL across intestinal membrane demonstrating excellent in vivo prospect of the formulation. The behavioural studies including forced swimming, muscle coordination, locomotor activity, akinesia, and catalepsy were performed in the haloperidol-induced PD rats that demonstrated increased efficacy of the formulation in contrast to the SEL-QUR and SEL suspensions. These studies concluded that developed LNC formulation loaded SEL with P-gp inhibitor had the potential in improving bioavailability of SEL in the brain via oral route.


Assuntos
Nanopartículas , Selegilina , Animais , Disponibilidade Biológica , Lipídeos , Tamanho da Partícula , Quercetina , Ratos , Ratos Wistar
6.
Curr Pharm Des ; 26(19): 2280-2290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250217

RESUMO

As per the present global scenario, Parkinson's disease (PD) is considered to be the second most common neurodegenerative disorder which is a keen area of interest among researchers. The conventional therapies generally employed against PD are associated with serious drawbacks including limited transport across selectively permeable BBB, hepatic metabolism, intestinal barrier, etc. This urges the need to develop novel therapeutic alternatives. The oral route being the most preferred route of administration needs to be explored for new and more intelligent drug delivery systems. Nanotechnology has been proposed to play a promising role in reversing the progression of the disease via the oral route. Nanocarriers, namely nanoparticles, lipid nanoparticles, nanoemulsions, nanocrystals, nanomicellar formulations, self-nanoemulsifying drug delivery systems and alginate nanocomposites have been investigated upon to modulate the fate of drugs inside the human body when administered orally. The development of various nanotherapeutics for the treatment of PD has been reviewed, depicting an enhanced bioavailability to provide a desired therapeutic outcome. The new advances in the therapy have been explored and highlighted through the body of this review. However, a therapeutically effective concentration at the target site remains a challenge, therefore extensive exploration in the field of nanotherapeutics may facilitate superior drug delivery to CNS via oral route thereby improving the state of disease progression.


Assuntos
Nanopartículas , Doença de Parkinson , Preparações Farmacêuticas , Administração Oral , Sistemas de Liberação de Medicamentos , Humanos , Doença de Parkinson/tratamento farmacológico
7.
Curr Pharm Des ; 26(19): 2291-2305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32303160

RESUMO

BACKGROUND: Human brain is amongst the most complex organs in human body, and delivery of therapeutic agents across the brain is a tedious task. Existence of blood brain barrier (BBB) protects the brain from invasion of undesirable substances; therefore it hinders the transport of various drugs used for the treatment of different neurological diseases including glioma, Parkinson's disease, Alzheimer's disease, etc. To surmount this barrier, various approaches have been used such as the use of carrier mediated drug delivery; use of intranasal route, to avoid first pass metabolism; and use of ligands (lactoferrin, apolipoprotein) to transport the drug across the BBB. Ligands bind with proteins present on the cell and facilitate the transport of drug across the cell membrane via. receptor mediated, transporter mediated or adsorptive mediated transcytosis. OBJECTIVE: The main focus of this review article is to illustrate various studies performed using ligands for delivering drug across BBB; it also describes the procedure used by various researchers for conjugating the ligands to the formulation to achieve targeted action. METHODS: Research articles that focused on the used of ligand conjugation for brain delivery and compared the outcome with unconjugated formulation were collected from various search engines like PubMed, Science Direct and Google Scholar, using keywords like ligands, neurological disorders, conjugation, etc. Results and Conclusion: Ligands have shown great potential in delivering drug across BBB for treatment of various diseases, yet extensive research is required so that the ligands can be used clinically for treating neurological diseases.


Assuntos
Barreira Hematoencefálica , Preparações Farmacêuticas , Transporte Biológico , Sistemas de Liberação de Medicamentos , Humanos , Ligantes
8.
Recent Pat Drug Deliv Formul ; 13(4): 246-254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884933

RESUMO

The structure of the eye is very complex in nature which makes it a challenging task for pharmaceutical researchers to deliver the drug at the desired sites via different routes of administration. The development of the nano-based system helped in delivering the drug in the desired concentration. Improvement in penetration property, bioavailability, and residence time has all been achieved by encapsulating drugs into liposomes, dendrimers, solid lipid nanoparticle, nanostructured lipid carrier, nanoemulsion, and nanosuspension. This review puts emphasis on the need for nanomedicine for ocular drug delivery and recent developments in the field of nanomedicine along with recent patents published in the past few years.


Assuntos
Sistemas de Liberação de Medicamentos , Oftalmopatias/tratamento farmacológico , Nanopartículas , Administração Oftálmica , Animais , Dendrímeros/química , Portadores de Fármacos/química , Olho/metabolismo , Humanos , Lipídeos/química , Lipossomos , Patentes como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...