Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brachytherapy ; 21(6): 769-782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35933272

RESUMO

PURPOSE: To predict clinical response in locally advanced cervical cancer (LACC) patients by a combination of measures, including clinical and brachytherapy parameters and several machine learning (ML) approaches. METHODS: Brachytherapy features such as insertion approaches, source metrics, dosimetric, and clinical measures were used for modeling. Four different ML approaches, including LASSO, Ridge, support vector machine (SVM), and Random Forest (RF), were applied to extracted measures for model development alone or in combination. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristics curve, sensitivity, specificity, and accuracy. Our results were compared with a reference model developed by simple logistic regression applied to three distinct clinical features identified by previous papers. RESULTS: One hundred eleven LACC patients were included. Nine data sets were obtained based on the features, and 36 predictive models were built. In terms of AUC, the model developed using RF applied to dosimetric, physical, and total BT sessions features were found as the most predictive [AUC; 0.82 (0.95 confidence interval (CI); 0.79 -0.93), sensitivity; 0.79, specificity; 0.76, and accuracy; 0.77]. The AUC (0.95 CI), sensitivity, specificity, and accuracy for the reference model were found as 0.56 (0.52 ...0.68), 0.51, 0.51, and 0.48, respectively. Most RF models had significantly better performance than the reference model (Bonferroni corrected p-value < 0.0014). CONCLUSION: Brachytherapy response can be predicted using dosimetric and physical parameters extracted from treatment parameters. Machine learning algorithms, including Random Forest, could play a critical role in such predictive modeling.


Assuntos
Braquiterapia , Neoplasias do Colo do Útero , Feminino , Humanos , Braquiterapia/métodos , Neoplasias do Colo do Útero/radioterapia , Aprendizado de Máquina , Radiometria , Curva ROC
2.
J Med Imaging Radiat Sci ; 51(1): 128-136, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32089514

RESUMO

RATIONALE AND OBJECTIVES: Radiomics is an approach to quantifying diseases. Recently, several studies have indicated that radiomics features are vulnerable against imaging parameters. The aim of this study is to assess how radiomics features change with radiographic field sizes, positions in the field size, and mAs. MATERIALS AND METHODS: A large and small wood phantom and a cotton phantom were prepared and imaged in different field sizes, mAs, and placement in the radiographic field size. A region of interest was drawn on the image features, and twenty two features were extracted. Radiomics feature reproducibility was obtained based on coefficient of variation, Bland-Altman analysis, and intraclass correlation coefficient. Features with coefficient of variation ≤ 5%, intraclass correlation coefficient ≤ 90%, and 1% ≤ U/LRL ≤30% were introduced as robust features. U/LRL is upper/lower reproducibility limits in Bland-Altman. RESULTS: For all field sizes and all phantoms, features including Difference Variance, Inverse Different Moment, Fraction, Long Run Emphasis, Run Length Non Uniformity, and Short Run Emphasis were found as highly reproducible features. For change in the position of field size, Fraction was the most reproducible in all field sizes and all phantoms. On the mAs change, we found that feature, Short Run Emphasis field 15 × 15 for small wood phantom, and Correlation in all field sizes for Cotton are the most reproducible features. CONCLUSION: We demonstrated that radiomics features are strongly vulnerable against radiographic field size, positions in the radiation field, mAs, and phantom materials, and reproducibility analyses should be performed before each radiomics study. Moreover, these changing parameters should be considered, and their effects should be minimized in future radiomics studies.


Assuntos
Técnicas de Apoio para a Decisão , Diagnóstico por Imagem , Interpretação de Imagem Assistida por Computador/métodos , Mineração de Dados , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
3.
J Med Signals Sens ; 10(4): 275-285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33575200

RESUMO

BACKGROUND: Feature reproducibility is a critical issue in quantitative radiomic studies. The aim of this study is to assess how radiographic radiomic textures behave against changes in phantom materials, their arrangements, and focal spot size. METHOD: A phantom with detachable parts was made using wood, sponge, Plexiglas, and rubber. Each material had 1 cm thickness and was imaged for consecutive time. The phantom also was imaged by change in the arrangement of its materials. Imaging was done with two focal spot sizes including 0.6 and 1.2 mm. All images were acquired with a digital radiography machine. Several texture features were extracted from the same size region of interest in all images. To assess reproducibility, coefficient of variation (COV), intraclass correlation coefficient (ICC), and Bland-Altman tests were used. RESULTS: Results show that 59%, 50%, and 4.5% of all features are most reproducible (COV ≤5%) against change in focal spot size, material arrangements, and phantom's materials, respectively. Results on Bland-Altman analysis showed that there is just a nonreproducible feature against change in the focal spot size. On the ICC results, we observed that the ICCs for more features are >0.90 and there were few features with ICC lower than 0.90. CONCLUSION: We showed that radiomic textures are vulnerable against changes in materials, arrangement, and different focal spot sizes. These results suggest that a careful analysis of the effects of these parameters is essential before any radiomic clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...