Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6339-6354, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371765

RESUMO

Understanding the intermolecular interactions between antibiotic drugs and hemoglobin is crucial in biological systems. The current study aimed to investigate the preparation of chitosan/polysorbate-80/tripolyphosphate (CS-PS/TPP) nanocomposite as a potential drug carrier for Ciprofloxacin-HCl drug (CFX), intended for controlled release formulation and further used to interact with bovine hemoglobin. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis-differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction analyses were used to characterize the CS-PS/TPP nanocomposite and its CFX-loaded nanocomposite. The second series of biophysical properties were performed on the Ciprofloxacin-loaded CS-PS/TPP (NCFX) for interaction with bovine hemoglobin (BHb). The interactions of (CFX and NCFX) with redox protein hemoglobin were investigated for the first time through a series of in vitro experimental techniques to provide comprehensive knowledge of the drug-protein binding interactions. Additionally, the effect of inclusion of PS-80 on the CFX-BHb interaction was also studied at different concentrations using fluorescence spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and circular dichroism (CD) under physiological conditions. The binding process of CFX and NCFX was spontaneous, and the fluorescence of BHb was quenched due to the static mechanism formation of the (CFX/BHb) and (NCFX/BHb) complexes. Thermodynamic parameters ΔG, ΔH, and ΔS at various temperatures indicate that the hydrogen bonding and van der Waals forces play a major role in the CFX-BHb association.

2.
ACS Omega ; 8(13): 12232-12245, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033869

RESUMO

Nowadays, the fabrication of 2D metal-organic nanosheets (2D MONs) has entered the research arena fascinating researchers worldwide. However, a lack of efficient and facile methods has remained a bottleneck for the manufacturing of these 2D MONs. Herein, a 2D metal-organic framework (MOF), i.e., 2D Cu-MOF, was synthesized using a facile and convenient stirring method by using 4,4'-trimethylenedipyridine (TMDP) as an organic linker. The as-prepared MOF was characterized in detail and based on single crystal X-ray diffraction analysis, it was established that tangled layers in the 2D Cu-MOF are interconnected to produce thick strands. These tangled layers could be easily separated via ultrasonication-induced liquid phase exfoliation (UILPE) to give the 2D Cu-MON as illustrated through Tyndall light scattering and exhaustive microscopic exploration such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The application of this 2D Cu-MON was assessed in the field of drug delivery revealing exceptional drug loading for the drug lansoprazole (LPZ) by 2D Cu-MONs as well as drug release in the acidic and neutral medium demonstrating that the 2D Cu-MON is an excellent carrier for antiulcer drug delivery. For environmental protection, the application of 2D Cu-MON was also examined toward the removal of various cationic and anionic dyes with excellent selectivity toward cationic dye removal. The plausible mechanism for dye removal indicated the involvement of cation-π and π-π interactions, for the effective adsorption of cationic dyes as well as a increase in the surface area of 2D Cu-MON by UILPE. Remarkably, the high drug loading and dye removal are imputed to the increase in surface area by UILPE. In a nutshell, the developed 2D Cu-MON will prove to be beneficial for application in the field of drug delivery as well as for wastewater treatment.

3.
J Hazard Mater ; 447: 130732, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641846

RESUMO

Here, the hybrid material of polyaniline/layered double hydroxide@carbonnanotubes (PANI/LDH@CNT) is considered a multifunctional material. Instrumental methods, including FTIR, XRD, TEM, SEM, and TGA/DTA were utilized to characterize PANI/LDH@CNT. The polymerization method created PANI/LDH@CNT as an adsorbent to remove toxic iodine in hexane solution with a capture capacity of 303.20 mg g-1 during 9 h. It is 900 mg g-1 in the vapor phase within 24 h. After three cycles, the PANI/LDH@CNT could be regenerated while maintaining 91.90 % iodine adsorption efficiency. Due to the presence of free amine (-N) groups, OH-, CO2H, and π-π conjugated structures in the PANI/LDH@CNT, it is also explored for efficient iodine uptake. It was demonstrated that the pseudo-first-order (PFO) and Langmuir model had the optimum correlation with the kinetic and isotherm data, respectively. Moreover, the use of PANI/LDH@CNT is not only limited to iodine capture; it can also be utilized as a sensitive sensor that displays a fluorescence "turn-off" response for Mn7+ and Cr6+ ions and a fluorescence "turn-on" response in the case of Al3+ ions. The fluorescence intensity of the PANI/LDH@CNT was turned off in the presence of Mn7+ and Cr6+ because of the fluorescence inner filter effect (IFE) mechanism. In contrast, the fluorescence intensity was turned on in the case of Al3+, relying on the chelation-enhanced fluorescence (CHEF) effect mechanism. Under optimal conditions, the limit of detection (LOD) of 51, 59, and 81 nM for Mn7+, Cr6+, and Al3+, respectively. According to the literature, this is probably the first example based on PANI/LDH@CNT as a multifunctional hybrid material employed as an adsorbent for capturing radioactive iodine and as a chemosensor for detecting heavy metal ions in aqueous solutions.

4.
J Biomol Struct Dyn ; 41(1): 106-124, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821213

RESUMO

The RxAc drug loaded on Tween80-chitosan-TPP nanoparticles (NRxAc) has been characterized and probed by UV-Vis, PXRD, FTIR, DLS and SEM technique. The physicochemical characteristics of NRxAc have been employed and evaluated for formulation of drug, particle size, external morphology, drug content and in vitro drug release. Multi-spectroscopic (i.e. fluorescence, UV-Vis, CD spectroscopy) and molecular docking techniques were also used to study the interaction of BSA with RxAc and NRxAc. RxAc and NRxAc quenched the fluorescence emission of BSA via a static quenching mechanism. The experimental data of Fluorescence demonstrated that the binding constant of RxAc and NRxAc were found around 104 L.mol-1, which suggests moderate binding affinity with BSA via hydrophobic forces. Through the site marker displacement experiments and molecular docking, the probable binding location of RxAc and NRxAc has been suggested in subdomain IB (site III) of BSA. Altogether, the results of present study can provide an important insight and a great deal of helpful information for future design of antiulcer drugs. Hence, The RxAc-loaded chitosan nanoparticles produced might be utilized as a successful tool for developing and using antiulcer drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Quitosana , Soroalbumina Bovina , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Quitosana/metabolismo , Sítios de Ligação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Ligação Proteica , Termodinâmica , Dicroísmo Circular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...