Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 551, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642170

RESUMO

Fish health management is critical to aquaculture and fisheries as it directly affects sustainability and productivity. Fish disease diagnosis has taken a massive stride because of advances in immunological and molecular diagnostic tools which provide a sensitive, quick, and accurate means of identifying diseases. This review presents an overview of the main molecular and immunological diagnostic methods for determining the health of fish. The immunological techniques help to diagnose different fish diseases by detecting specific antigens and antibodies. The application of immunological techniques to vaccine development is also examined in this review. The genetic identification of pathogens is made possible by molecular diagnostic techniques that enable the precise identification of bacterial, viral, and parasitic organisms in addition to evaluating host reactions and genetic variation associated with resistance to disease. The combination of molecular and immunological methods has resulted in the creation of novel techniques for thorough evaluation of fish health. These developments improve treatment measures, pathogen identification and provide new information about the variables affecting fish health, such as genetic predispositions and environmental stresses. In the framework of sustainable fish farming and fisheries management, this paper focuses on the importance of these diagnostic techniques that play a crucial role in protecting fish populations and the aquatic habitats. This review also examines the present and potential future directions in immunological and molecular diagnostic techniques in fish health.


Assuntos
Aquicultura , Doenças dos Peixes , Animais , Pesqueiros , Anticorpos , Técnicas de Diagnóstico Molecular , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/genética , Peixes/genética
2.
Toxicol Rep ; 12: 253-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379553

RESUMO

Organophosphate insecticide spray poses potential threat of contamination of environmental components their accumulation in aquatic organisms. Although various physiological deficits associated with their exposure in fishes are documented, yet their retention in their edible muscle tissues has been poorly studied. In this context, the study was undertaken to ascertain the bioaccumulation of two organophosphate insecticide compounds (dimethoate and chlorpyrifos) in the muscles of juvenile Cyprinus carpio. The study could provide insight into the risks to human health associated with consuming contaminated fish flesh. The fishes exposed to various concentrations of dimethoate and chlorpyrifos in-vivo for 96 to ascertain the uptake and retention of these insecticides in the muscle. Results indicated that fish muscles accumulated the residues at all the concentrations with the recovery of 2.99% (0.032 ppm) of dimethoate exposed to LC50 concentrations. In contrast, the chlorpyrifos residues were found Below the Detection Level (BDL) in the fishes exposed to LC50 concentrations. The percentage bioaccumulation of dimethoate in fish muscle was 88.10%, and that of chlorpyrifos was BDL. The bio-concentration factor was dose-dependent and increased with increasing doses of both insecticides. The study invites attention to human health risk assessment in the regions where contaminated fish are consumed without scientific supervision.

3.
Heliyon ; 8(11): e11227, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36353155

RESUMO

For the ever increasing human population, the necessity to produce the food in large quantities has become the main goal internationally which has led to increase the practice of pesticides globally. Presence of pesticides in aquatic water bodies is largely due to the runoff from agricultural fields causing to deteriorate the healthy characteristics of an aquatic environment system leading to the toxic impact on non-target aquatic organism such as fish. Approach: In fish, there are various portal of entry through which the contaminants enter. Via various routes, the contaminants reach into the blood and subsequently to different organs or systems. Since Pesticides are known to modify the behavior of animals when exposed to toxic levels. The behavioral changes may be caused by the changes in the nervous system triggered directly or through metabolic or physiological activities. However, the effects have been found to be multifarious and known to differ at different concentrations. Also, Blood is the most accessible component of the vertebrate body fluid system and consequences of direct and indirect damage to blood cells and their precursors are predictable and potentially life threatening. Therefore, behavioural and genotoxicological studies have been considered and used as diagnostic tool in order to investigate behavioural and genotoxicological alterations. This study was undertaken to investigate behavioural changes in Cyprinus carpio exposed to two organophosphate compounds, chlorpyrifos (cpf) and dimethoate (dim). Fishes weighing 10 ± 2 g were exposed to sub-lethal concentrations of cpf (0.76 ppb, 1.52 ppb, 2.28 ppb, 3.04 ppb and 3.8 ppb) and dimethoate (0.22 ppm, 0.44 ppm, 0.66 ppm, 0.88 ppm and 1.1 ppm) for the period of 96 h and various behavioural indices were evaluated during that period. Both the pesticides were found to induce behavioral toxicity in fishes such as drop in swimming velocity, reduced swimming activity and retarded opercular movements. Cpf was found more detrimental as compared to dimethoate in all cases. Fishes also elicited a genotoxic response which was evaluated by calculating the frequency of micronuclei formation in their hematocytes after 21 days of exposure. Chlorpyrifos induced more genotoxicity than dimethoate which was found dose and time dependent. Conclusion: It was concluded that the behavioural and genotoxic alterations in common carp could be applied as possible biomarkers in risk assessment and monitoring programs for pesticide contamination of aquatic ecosystems. Contribution: This study is one of its kind and will help to form baseline data.

4.
ScientificWorldJournal ; 2016: 4726126, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563689

RESUMO

The present study was designed to investigate acute toxicity of dimethoate on juvenile Cyprinus carpio var. communis. Fishes weighing 10 ± 2 gms were selected and mortality data was statistically evaluated by Finney's Probit Method. The 96-hour LC50 value for Cyprinus carpio was found as 1.1 ppm in static bioassay system. Mean values of physicochemical parameters of aquarium waters determined during bioassay depicted slight variation indicating that the mortality in aquarium fishes occurred due to pesticide exposure and not suffocation. Lab. temperature ranged from 12 to 13°C; water temperature ranged from 11 to 12°C; dissolved oxygen ranged from 3.90 to 4.56 mg/L; pH ranged from 6.90 to 7.05; total dissolved solids ranged from 2.66 to 3.0 × 10(3) mg/L, while CO2 remained at a constant value of 2.0 mg/L. The fishes elicited various behavioural responses such as uncoordinated movements, convulsions, excessive mucus secretion, and imbalanced swimming which ended in a collapse to the bottom of the aquarium. Prior to death, the clinical signs like scale erosion, pale body colour, and hemorrhagic patches over the body were noticed which became more vivid up to the termination of experiments. Results of the study indicate potential toxicity of dimethoate in fingerlings of common carp for which the natural waterbodies must be continuously monitored to reduce its impact across food chains.


Assuntos
Comportamento Animal/efeitos dos fármacos , Carpas , Dimetoato/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Índia , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...