Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbes Infect ; 26(3): 105263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38013067

RESUMO

Currently, traditional and newer molecular and mass spectrometry techniques of identifying bacteria from biological samples requires lengthy sample preparation, growth and labelling/staining assays. Thus, there is a pressing clinical need for an adjunct method that accurately identifies bacteria in real time. Here we report on the evaluation of confocal microscopy for the identification of clinically important and multi-drug resistant (MDR) bacteria in real time, using their intrinsic fluorescence features, i.e., emission spectra and fluorescence lifetime. The results demonstrate that difference in emission spectra and fluorescence lifetimes can be used as a fingerprint for identification of 12 bacterial species and MDR strains in real-time. Photostability or time-traces of bacteria demonstrated that these parameters could be used for tracking and recording without a need for labelling. Further, dilution experiments demonstrated that using intrinsic fluorescence S. aureus, Klebsiella pneumoniae and Escherichia coli bacteria can be detected and identified at clinically relevant concentrations as low as 2 × 102 CFU/mL. This non-invasive, non-labelling optical methodology may serve as the basis for development of a device that would quickly and accurately identify bacteria in biological samples. Thus, this intrinsic fluorescence technique would provide clinicians information, within minutes from sampling, to base accurate and specific treatments for patients.


Assuntos
Bactérias , Staphylococcus aureus , Humanos , Escherichia coli , Imagem Óptica
2.
Anal Chim Acta ; 1282: 341925, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37923411

RESUMO

The detection and identification of biomolecules are essential in the modern era of medical diagnostics. Several approaches have been established, but they have significant limitations such as laborious and time-consuming sample preparation, analysis, and the need to use external probes which provide adequate but not desired levels of accuracy and sensitivity. Herein, we have explored successfully a non-invasive technique to detect and identifybiomolecules such as amino acids and proteins by utilizing their intrinsic fluorescence. The developed confocal microscopy method revealed high and photostable emission counts of these biomolecules including amino acids (tryptophan, phenylalanine, tyrosine, proline, histidine, cysteine, aspartic acid, asparagine, isoleucine, lysine, glutamic acid, arginine) and proteins (HSA, BSA) when they are excited with a green laser. The fluorescence lifetime of the samples enabled the identification and distinction of known and blind samples of biomolecules from each other. The developed optical technique is straightforward, non-destructive and does not require laborious labeling to identify specific proteins, and may serve as the basis for the development of a device that would quickly and accurately identify proteins at an amino acid level. Therefore, this approach would open an avenue for precise detection in imaging and at the same time increases our understanding of chemical dynamics at the molecular level.


Assuntos
Alanina , Aminoácidos , Aminoácidos/análise , Fluorescência , Metionina , Leucina , Glicina , Cistina , Valina , Serina , Treonina , Proteínas , Tirosina , Arginina
3.
Artigo em Inglês | MEDLINE | ID: mdl-36078576

RESUMO

OBJECTIVE: The objective of this systematic review was (a) to explore the current clinical applications of AI/ML (Artificial intelligence and Machine learning) techniques in diagnosis and treatment prediction in children with CLP (Cleft lip and palate), (b) to create a qualitative summary of results of the studies retrieved. MATERIALS AND METHODS: An electronic search was carried out using databases such as PubMed, Scopus, and the Web of Science Core Collection. Two reviewers searched the databases separately and concurrently. The initial search was conducted on 6 July 2021. The publishing period was unrestricted; however, the search was limited to articles involving human participants and published in English. Combinations of Medical Subject Headings (MeSH) phrases and free text terms were used as search keywords in each database. The following data was taken from the methods and results sections of the selected papers: The amount of AI training datasets utilized to train the intelligent system, as well as their conditional properties; Unilateral CLP, Bilateral CLP, Unilateral Cleft lip and alveolus, Unilateral cleft lip, Hypernasality, Dental characteristics, and sagittal jaw relationship in children with CLP are among the problems studied. RESULTS: Based on the predefined search strings with accompanying database keywords, a total of 44 articles were found in Scopus, PubMed, and Web of Science search results. After reading the full articles, 12 papers were included for systematic analysis. CONCLUSIONS: Artificial intelligence provides an advanced technology that can be employed in AI-enabled computerized programming software for accurate landmark detection, rapid digital cephalometric analysis, clinical decision-making, and treatment prediction. In children with corrected unilateral cleft lip and palate, ML can help detect cephalometric predictors of future need for orthognathic surgery.


Assuntos
Fenda Labial , Fissura Palatina , Inteligência Artificial , Criança , Fenda Labial/diagnóstico , Fenda Labial/cirurgia , Fissura Palatina/diagnóstico , Fissura Palatina/cirurgia , Humanos , Aprendizado de Máquina
4.
Nanomaterials (Basel) ; 11(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802102

RESUMO

Fluorescent nanoparticles (NPs) have been increasingly studied as contrast agents for better understanding of biological processes at the cellular and molecular level. However, their use as bioimaging tools is strongly dependent on their optical emission as well as their biocompatibility. This work reports the fabrication and characterization of silk fibroin (SF) coated magnesium oxide (MgO) nanospheres, containing oxygen, Cr3+ and V2+ related optical defects, as a nontoxic and biodegradable hybrid platform for bioimaging applications. The MgO-SF spheres demonstrated enhanced emission efficiency compared to noncoated MgO NPs. Furthermore, SF sphere coating was found to overcome agglomeration limitations of the MgO NPs. The hybrid nanospheres were investigated as an in vitro bioimaging tool by recording their cellular uptake, trajectories, and mobility in human skin keratinocytes cells (HaCaT), human glioma cells (U87MG) and breast cancer cells (MCF7). Enhanced cellular uptake and improved intracellular mobilities of MgO-SF spheres compared to MgO NPs was demonstrated in three different cell lines. Validated infrared and bright emission of MgO-SF NP indicate their prospects for in vivo imaging. The results identify the potential of the hybrid MgO-SF nanospheres for bioimaging. This study may also open new avenues to optimize drug delivery through biodegradable silk and provide noninvasive functional imaging feedback on the therapeutic processes through fluorescent MgO.

5.
Environ Pollut ; 272: 116010, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189449

RESUMO

Polyaromatic hydrocarbons (PAHs), such as pyrene, benzo[a]pyrene, phenanthrene, and anthracene induce toxic, carcinogenic, and mutagenic effects on living organisms and are considered as primary pollutants. Traditional methods for their identification are often laborious and time-consuming and do not account for the heterogeneous nature of their distribution. Here we present confocal microscopy as a rapid and accurate technique for direct analysis of PAHs in soil samples without the complexity of sample pre-processing which might delay results for several days. The method uses the intrinsic fluorescence of PAHs for detection and their emission spectra for the identification of different PAHs. A clear difference was observed in the fluorescence spectral properties of phenanthrene, pyrene and naphthalene in real-time environmental samples. The post-processing of confocal scans obtained in the detection stage of PAHs was completed through the application of ImageJ software. Intrinsic fluorescence-based detections of PAHs may open new avenues in terms of rapid detection and identification of PAHs in heterogeneous complex soil samples.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Benzo(a)pireno , Fluorescência , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
6.
Sci Rep ; 10(1): 7219, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350308

RESUMO

Nematode eggs are pervasive pathogens that infect billions of people and livestock every year. Adult parasitic nematode worms can be distinguished based on their size and morphology. However, their eggs, particularly their species Ascaris lumbricoides and Ascaris suum cannot be identified from each other. Identifying eggs of helminths from wastewater and sludge is important from a public health perspective to minimize the spread of Ascaris infections. Numerous methods exist for nematode identification, from a morphological-based approach to high throughput sequencing technology. However, these techniques are not consistent and often laborious and time-consuming. In this study, we demonstrate that non-invasive real-time identification of eggs is possible based on their intrinsic fluorescence. Using confocal microscopy, we investigate the autofluorescence properties of five species of nematode eggs and observe clear differences between genus and for the first time their species in sludge samples. This non-invasive imaging technique could lead to better understanding of these species and may assist in early control of diseases.


Assuntos
Ascaríase/diagnóstico , Ascaris lumbricoides/citologia , Ascaris suum/citologia , Óvulo/citologia , Animais , Humanos , Microscopia Confocal , Contagem de Ovos de Parasitas
7.
J Nanosci Nanotechnol ; 19(12): 7673-7678, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196274

RESUMO

The present research work elucidates the photocatalytic effect of titania on liquid crystal based sensor used to detect sodium arsenate in water. The titania nanoparticles with an average size of 18-20 nm were synthesized by hydrothermal method and calcined up to 500 °C to obtain pure anatase phase. The catalytic activity of titania nanoparticles was enhanced by surface modification with (3-aminopropyl) trimethoxysilane. The sensing experiment was performed under visible light irradiation while keeping the concentration of substrate, analyte, the thickness of the liquid crystal layer, temperature and pH values constant. In addition, span 80 (a non-ionic surfactant) was used to obtain homeotropic alignment of liquid crystals. The TiO2 nanoparticles gave dark to bright texture within 53 min while the functionalized titania responded in less than 25 min under similar sensing condition. The detection results showed that the functionalized titania nanoparticles possess greater photocatalytic activity under visible light and enhanced the sensing response than unfunctionalized titania nanoparticles.

8.
Biosens Bioelectron ; 85: 110-127, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27162142

RESUMO

In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.


Assuntos
Técnicas Biossensoriais/instrumentação , Cristais Líquidos/química , Animais , Bactérias/isolamento & purificação , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Glucose/análise , Humanos , Metais Pesados/análise , Ácidos Nucleicos/análise , Proteínas/análise , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...