Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Opt Lett ; 49(11): 2966-2969, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824304

RESUMO

Over the past decades, spin qubits in silicon carbide (SiC) have emerged as promising platforms for a wide range of quantum technologies. The fluorescence intensity holds significant importance in the performance of quantum photonics, quantum information process, and sensitivity of quantum sensing. In this work, a dual-layer Au/SiO2 dielectric cavity is employed to enhance the fluorescence intensity of a shallow silicon vacancy ensemble in 4H-SiC. Experimental results demonstrate an effective fourfold augmentation in fluorescence counts at saturating laser power, corroborating our theoretical predictions. Based on this, we further investigate the influence of dielectric cavities on the contrast and linewidth of optically detected magnetic resonance (ODMR). There is a 1.6-fold improvement in magnetic field sensitivity. In spin echo experiments, coherence times remain constant regardless of the thickness of dielectric cavities. These experiments pave the way for broader applications of dielectric cavities in SiC-based quantum technologies.

2.
Mol Neurobiol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780721

RESUMO

Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1ß, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.

3.
Adv Sci (Weinh) ; : e2401436, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749008

RESUMO

Yarn-woven triboelectric nanogenerators (TENGs) have greatly advanced wearable sensor technology, but their limited sensitivity and stability hinder broad adoption. To address these limitations, Poly(VDF-TrFE) and P(olyadiohexylenediamine (PA66)-based nanofibers coaxial yarns (NCYs) combining coaxial conjugated electrospinning and online conductive adhesive coating are developed. The integration of these NCYs led to enhanced TENGs (NCY-TENGs), notable for their flexibility, stretchability, and improved sensitivity, which is ideal for capturing body motion signals. One significant application of this technology is the fabrication of smart insoles from NCY-TENG plain-woven fabrics. These insoles are highly sensitive and possess antibacterial, breathable, and washable properties, making them ideal for real-time gait monitoring in patients with diabetic foot conditions. The NCY-TENGs and their derivatives show immense potential for a variety of wearable electronic devices, representing a considerable advancement in the field of wearable sensors.

4.
Research (Wash D C) ; 7: 0355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694202

RESUMO

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

5.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672500

RESUMO

Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.


Assuntos
Materiais Biocompatíveis , Neuroma , Traumatismos dos Nervos Periféricos , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Neuroma/terapia , Traumatismos dos Nervos Periféricos/terapia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Animais , Regeneração Nervosa , Alicerces Teciduais/química
6.
Thorac Cancer ; 15(16): 1279-1286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664975

RESUMO

BACKGROUND:  This study aims to analyze breast cancer burden attributable to high body mass index (BMI) and high fasting plasma glucose (FPG) in China from 1990 to 2019. METHODS: Data were obtained from the Global Burden of Disease (GBD) study 2019. Deaths and disability-adjusted life years (DALYs) were used for attributable burden, and age-period-cohort (APC) model was used to evaluate the independent effects of age, period and birth cohort. RESULTS: In 2019, the age-standardized mortality and DALY rates of breast cancer attributable to high BMI were 1.107 (95% UI: 0.311, 2.327) and 29.990 (8.384, 60.713) per 100 000, and mortality and DALY rates attributable to high FPG were 0.519 (0.095, 1.226) and 13.662 (2.482, 32.425) per 100 000. From 1990 to 2019, the age-standardized mortality and DALY rates of breast cancer attributable to high BMI increased by 1.192% and 1.180%, and the trends of high FPG were not statistically significant. The APC results showed that the age effects of high BMI and high FPG-mortality and DALY rates increased, with the highest rates in the age group over 80 years. The birth cohort effects of high BMI showed "inverted V" shapes, while high FPG showed downward trends. CONCLUSIONS: Age was the main reason for the increase of attributable burden, and postmenopausal women were the high-risk groups. Therefore, targeted prevention measures should be developed to improve postmenopausal women's awareness and effectively reduce the prevalence of obesity and diabetes, thereby reducing the breast cancer burden caused by metabolic factors in China.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/mortalidade , China/epidemiologia , Pessoa de Meia-Idade , Adulto , Idoso , Índice de Massa Corporal , Fatores de Risco , Estudos Epidemiológicos , Glicemia/metabolismo , Carga Global da Doença , População do Leste Asiático
7.
Opt Express ; 32(7): 12200-12212, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571050

RESUMO

As an integral component of the laser interferometry measurement system, the tilt-to-length (TTL) coupling noise inside the telescope stands out as a critical noise factor that requires meticulous consideration. In the TianQin project, the non-geometric TTL-coupled noise inside the telescope should be less than 0.22 pm/Hz1/2. Additionally, the wavefront aberration RMS at the small pupil of the telescope needs to be better than 0.0065 λ. These requirements set for the telescope are exceptionally stringent. To address this challenge, this study aims to relax the wavefront aberration requirements by mitigating non-geometric TTL coupling noise, while ensuring the non-geometric TTL coupling noise remains below 0.22 pm/Hz1/2. By controlling the coupling aberration proportion, the wavefront aberration RMS at the small pupil of the telescope can be relaxed to 0.014 λ. Alternatively, optimizing the Gaussian beam waist radius can relax the wavefront aberration RMS to 0.016 λ. By simultaneously utilizing two optimization methods, the wavefront aberration at the small pupil of the telescope can be reduced to 0.033 λ, resulting in an impressive success rate of 91.15% in meeting the noise requirements.

8.
Bone Res ; 12(1): 16, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443372

RESUMO

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone prostaglandin E2 (PGE2) concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of cyclooxygenase-2 (COX2) in the osteoblast lineage cells or knockout of receptor 4 (EP4) in sensory nerve blunts bone formation in response to mechanical loading. Moreover, knockout of TrkA in sensory nerve also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces cAMP-response element binding protein (CREB) phosphorylation in the hypothalamic arcuate nucleus (ARC) to inhibit sympathetic tyrosine hydroxylase (TH) expression in the paraventricular nucleus (PVN) for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.


Assuntos
Interocepção , Osteoartrite , Animais , Camundongos , Dinoprostona , Tornozelo , Encéfalo , Dor
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527593

RESUMO

BACKGROUND: Postoperative Cognitive Dysfunction (POCD) has attracted increased attention, but its precise mechanism remains to be explored. This study aimed to figure out whether HDAC6 could regulate NLRP3-induced pyroptosis by modulating the functions of HSP70 and HSP90 in microglia to participate in postoperative cognitive dysfunction in aged mice. METHODS: Animal models of postoperative cognitive dysfunction in aged mice were established by splenectomy under sevoflurane anesthesia. Morris water maze was used to examine the cognitive function and motor ability. Sixteen-months-old C57BL/6 male mice were randomly divided into six groups: control group (C group), sham surgery group (SA group), splenectomy group (S group), splenectomy + HDAC6 inhibitor ACY-1215 group (ACY group), splenectomy + HDAC6 inhibitor ACY-1215 + HSP70 inhibitor Apoptozole group (AP group), splenectomy + solvent control group (SC group). The serum and hippocampus of mice were taken after mice were executed. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, cleaved-Caspase-1 (P20), IL-1ß were detected by western blotting. Serum IL-1ß, IL-6 and S100ß were measured using ELISA assay, and cell localization of HDAC6 was detected by immunofluorescence. In vitro experiments, BV2 cells were used to validate whether this mechanism worked in microglia. The protein levels of HDAC6, HSP90, HSP70, NLRP3, GSDMD-N, P20, IL-1ß were detected by western blotting and the content of IL-1ß in the supernatant was measured using ELISA assay. The degree of acetylation of HSP90, the interaction of HSP70, HSP90 and NLRP3 were analyzed by coimmunoprecipitation assay. RESULTS: Splenectomy under sevoflurane anesthesia in aged mice could prolong the escape latency, reduce the number of crossing platforms, increase the expression of HDAC6 and activate the NLRP3 inflammasome to induce pyroptosis in hippocampus microglia. Using ACY-1215 could reduce the activation of NLRP3 inflammasome, the pyroptosis of microglia and the degree of spatial memory impairment. Apoptozole could inhibit the binding of HSP70 to NLRP3, reduce the degradation of NLRP3 and reverse the protective effect of HDAC6 inhibitors. The results acquired in vitro experiments closely resembled those in vivo, LPS stimulation led to the pyroptosis of BV2 microglia cells and the release of IL-1ß due to the activation of the NLRP3 inflammasome, ACY-1215 showed the anti-inflammatory effect and Apoptozole exerted the opposite effect. CONCLUSIONS: Our findings suggest that hippocampal HDAC6 promotes POCD by regulating NLRP3-induced microglia pyroptosis via HSP90/HSP70 in aged mice.


Assuntos
Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Hipocampo , Desacetilase 6 de Histona , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Piroptose/efeitos dos fármacos , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Camundongos , Masculino , Proteínas de Choque Térmico HSP90/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas de Choque Térmico HSP70/metabolismo , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/patologia , Ácidos Hidroxâmicos/farmacologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Modelos Animais de Doenças
10.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467611

RESUMO

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Assuntos
Fármacos Neuroprotetores , Traumatismos do Nervo Óptico , Animais , Camundongos , Comunicação Celular , Morte Celular , Sobrevivência Celular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia
11.
J Colloid Interface Sci ; 665: 413-421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537589

RESUMO

The essence of compartmentalization in cells is the inspiration behind the engineering of synthetic counterparts, which has emerged as a significant engineering theme. Here, we report the formation of ultra-stable water-in-water (W/W) emulsion droplets. These W/W droplets demonstrate previously unattained stability across a broad pH spectrum and exhibit resilience at temperatures up to 80℃, overcoming the challenge of insufficient robustness in dispersed droplets of aqueous two-phase systems (ATPS). The exceptional robustness is attributed to the strong anchoring of micelle-like casein colloidal particles at the PEO/DEX interface, which maintains stability under varying environmental conditions. The increased surface hydrophobicity of these particles at high temperatures contributes to the formation of thermally-stable droplets, enduring temperatures as high as 80℃. Furthermore, our study illustrates the adaptable affinity of micelle-like casein colloidal particles towards the PEO/DEX-rich phase, enabling the formation of stable DEX-in-PEO emulsions at lower pH levels, and PEO-in-DEX emulsions as the pH rises above the isoelectric point. The robust nature of these W/W emulsions unlocks new possibilities for exploring various biochemical reactions within synthetic subcellular modules and lays a solid foundation for the development of novel biomimetic materials.


Assuntos
Micelas , Resiliência Psicológica , Caseínas , Emulsões , Água , Concentração de Íons de Hidrogênio
12.
Nat Commun ; 15(1): 1107, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321061

RESUMO

Hierarchical compartmentalization, a hallmark of both primitive and modern cells, enables the concentration and isolation of biomolecules, and facilitates spatial organization of biochemical reactions. Coacervate-based compartments can sequester and recruit a large variety of molecules, making it an attractive protocell model. In this work, we report the spontaneous formation of core-shell cell-sized coacervate-based compartments driven by spontaneous evaporation of a sessile droplet on a thin-oil-coated substrate. Our analysis reveals that such far-from-equilibrium architectures arise from multiple, coupled segregative and associative liquid-liquid phase separation, and are stabilized by stagnation points within the evaporating droplet. The formation of stagnation points results from convective capillary flows induced by the maximum evaporation rate at the liquid-liquid-air contact line. This work provides valuable insights into the spontaneous formation and maintenance of hierarchical compartments under non-equilibrium conditions, offering a glimpse into the real-life scenario.


Assuntos
Células Artificiais , Fenômenos Físicos , Separação de Fases , Tamanho Celular , Veias
14.
ACS Appl Mater Interfaces ; 16(10): 13082-13090, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416690

RESUMO

Smart electromagnetic interference (EMI) shielding materials are of great significance in coping with the dynamic performance demands of cutting-edge electronic devices. However, smart EMI shielding materials are still in their infancy and face a variety of challenges (e.g., large thickness, limited tunable range, poor reversibility, and unclear mechanisms). Here, we report a method for controllable shielding electromagnetic (EM) waves through subwavelength structure changes regulated by the customized structure via a direct printing route. The highly conductive MXene ink is regulated with metal ions (Al3+ ions), giving superb metallic conductivity (∼5000 S cm-1) for the printed lines without an annealing treatment. The reversible tunability of EMI shielding effectiveness (SE) ranging from 8.2 dB ("off" state) to 34 dB ("on" state) is realized through the controllable modulation of subwavelength structure driven by stress. This work provides a feasible strategy to develop intelligent shielding materials and EM devices.

15.
Small ; 20(23): e2307603, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213024

RESUMO

Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion. When cultured with endothelial cells (ECs) and smooth muscle cells (SMCs), the macro-fibers support healthy cell proliferation and exhibit a unique spiral SMC alignment, demonstrating their vascular suitability. This innovative strategy opens new avenues for advances in tissue engineering.


Assuntos
Celulose , Nanofibras , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Nanofibras/química , Alicerces Teciduais/química , Celulose/química , Humanos , Miócitos de Músculo Liso/citologia , Proliferação de Células/efeitos dos fármacos , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Indóis/química , Polímeros
16.
bioRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38293177

RESUMO

The intricate relationship between the dopaminergic system and olfactory associative learning in Drosophila has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored. Our investigation reveals the expression of D2Rs in both DANs and the mushroom body (MB) of third instar larval brains. Silencing D2Rs in DAN-c1 via microRNA disrupts aversive learning, further supported by optogenetic activation of DAN-c1 during training, affirming the inhibitory role of D2R autoreceptor. Intriguingly, D2R knockdown in the MB impairs both appetitive and aversive learning. These findings elucidate the distinct contributions of D2Rs in diverse brain structures, providing novel insights into the molecular mechanisms governing associative learning in Drosophila larvae.

17.
Eur J Ophthalmol ; : 11206721241226469, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204151

RESUMO

PURPOSE: This study aimed to evaluate the impact of intravitreal triamcinolone acetonide (TA) administration after peeling of idiopathic epiretinal membranes (iERM) on both anatomical and visual outcomes, utilizing the ectopic inner foveal layer (EIFL) staging scheme. METHODS: In this retrospective case-control study, we analyzed 43 eyes from 43 patients diagnosed with iERM between June 2019 and December 2021. All participants were categorized into the TA or control groups based on administering intravitreal TA injection following ERM peeling. We thoroughly reviewed the clinical data, including the preoperative and postoperative best-corrected visual acuity (BCVA), central foveal thickness (CFT), and macular cube volume (VOL), with ERM stages classified according to the EIFL staging scheme. RESULTS: The study enrolled 22 eyes in the TA and 21 in the control groups. Following a mean follow-up period of 11.07 ± 2.02 months, noteworthy improvements in EIFL stages were observed in both cohorts (p < 0.01), but without significant distinctions between groups. In the TA group, 63.64% of eyes demonstrated improvements in EIFL stages, while the control group exhibited 76.19% (p = 0.37). At the final visit, both groups experienced a noteworthy reduction in the postoperative CFT and VOL (p < 0.05), coupled with significant improvement in BCVA (p < 0.01). No substantial differences appeared between the two groups concerning BCVA, CFT, and VOL (all p > 0.05). CONCLUSIONS: Our study suggested that concurrent intravitreal TA injection following ERM removal did not provide additional benefits regarding anatomical and visual improvement in iERM cases classified as Stages 2 and 3.

18.
Acta Pharmacol Sin ; 45(3): 619-632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37848553

RESUMO

N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 µM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Movimento Celular , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Linhagem Celular Tumoral , Proteínas Correpressoras/farmacologia , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1009891

RESUMO

OBJECTIVES@#To investigate the clinical characteristics, treatment, and prognosis of children with perianal fistulizing Crohn's disease (pfCD).@*METHODS@#A retrospective analysis was conducted on the children, aged 6-17 years, who were diagnosed with Crohn's disease (CD) from April 2015 to April 2023. According to the presence or absence of perianal fistulizing lesions, they were divided into two groups: pfCD (n=60) and non-pfCD (n=82). The two groups were compared in terms of clinical characteristics, treatment, and prognosis.@*RESULTS@#The incidence of pfCD was 42.3% (60/142). The proportion of males in the pfCD group was higher than that in the non-pfCD group. Compared with the non-pfCD group, the pfCD group had a significantly higher proportion of children with involvement of the colon and small intestine or those with upper gastrointestinal lesions (P<0.05). Compared with the non-pfCD group, the pfCD group had a significantly higher rate of use of infliximab during both induction and maintenance treatment (P<0.05). In the pfCD group, the children with complex anal fistula accounted for 62% (37/60), among whom the children receiving non-cutting suspended line drainage accounted for 62% (23/37), which was significantly higher than the proportion among the children with simple anal fistula patients (4%, 1/23) (P<0.05). There were no significant differences between the two groups in mucosal healing rate and clinical remission rate at week 54 of treatment (P>0.05). The pfCD group achieved a fistula healing rate of 57% (34/60) at week 54, and the children with simple anal fistula had a significantly higher rate than those with complex anal fistula (P<0.05).@*CONCLUSIONS@#There is a high incidence rate of pfCD in children with CD, and among the children with pfCD, there is a high proportion of children with the use of biological agents. There is a high proportion of children receiving non-cutting suspended line drainage among the children with complex anal fistula. The occurrence of pfCD should be closely monitored during the follow-up in children with CD.


Assuntos
Criança , Masculino , Humanos , Doença de Crohn/complicações , Estudos Retrospectivos , Prognóstico , Infliximab/uso terapêutico , Fístula Retal/terapia
20.
Res Sq ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37790467

RESUMO

Bone is a mechanosensitive tissue and undergoes constant remodeling to adapt to the mechanical loading environment. However, it is unclear whether the signals of bone cells in response to mechanical stress are processed and interpreted in the brain. In this study, we found that the hypothalamus of the brain regulates bone remodeling and structure by perceiving bone PGE2 concentration in response to mechanical loading. Bone PGE2 levels are in proportion to their weight bearing. When weight bearing changes in the tail-suspension mice, the PGE2 concentrations in bones change in line with their weight bearing changes. Deletion of Cox2 or Pge2 in the osteoblast lineage cells or knockout Ep4 in sensory nerve blunts bone formation in response to mechanical loading. And sensory denervation also significantly reduces mechanical load-induced bone formation. Moreover, mechanical loading induces CREB phosphorylation in the hypothalamic ARC region to inhibit sympathetic TH expression in the PVN for osteogenesis. Finally, we show that elevated PGE2 is associated with ankle osteoarthritis (AOA) and pain. Together, our data demonstrate that in response to mechanical loading, skeletal interoception occurs in the form of hypothalamic processing of PGE2-driven peripheral signaling to maintain physiologic bone homeostasis, while chronically elevated PGE2 can be sensed as pain during AOA and implication of potential treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...