Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 307: 122514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428093

RESUMO

Surgical intervention followed by chemotherapy is the principal treatment strategy for bladder cancer, which is hindered by significant surgical risks, toxicity from chemotherapy, and high rates of recurrence after surgery. In this context, a novel approach using mild magnetic hyperthermia therapy (MHT) for bladder cancer treatment through the intra-bladder delivery of magnetic nanoparticles is presented for the first time. This method overcomes the limitations of low magnetic thermal efficiency, inadequate tumor targeting, and reduced therapeutic effectiveness associated with the traditional intravenous administration of magnetic nanoparticles. Core-shell Zn-CoFe2O4@Zn-MnFe2O4 (MNP) nanoparticles were developed and further modified with hyaluronic acid (HA) to enhance their targeting ability toward tumor cells. The application of controlled mild MHT using MNP-HA at temperatures of 43-44 °C successfully suppressed the proliferation of bladder tumor cells and tumor growth, while also decreasing the expression levels of heat shock protein 70 (HSP70). Crucially, this therapeutic approach also activated the body's innate immune response involving macrophages, as well as the adaptive immune responses of dendritic cells (DCs) and T cells, thereby reversing the immunosuppressive environment of the bladder tumor and effectively reducing tumor recurrence. This study uncovers the potential immune-activating mechanism of mild MHT in the treatment of bladder cancer and confirms the effectiveness and safety of this strategy, indicating its promising potential for the clinical management of bladder cancer with a high tendency for relapse.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária , Humanos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/patologia , Fenômenos Magnéticos , Linhagem Celular Tumoral
2.
J Colloid Interface Sci ; 636: 577-587, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669451

RESUMO

The degradation of volatile organic compounds (VOCs) at low temperature remains a big challenge. Photothermal catalysis coupling the advantages of photocatalysis and thermocatalysis is promising to address this issue. However, there is still a long way to construct highly active catalysts and deeply understand the mechanism of photothermal catalysis. Herein, maganese oxide (MnO2)catalysts embedded with Pt single-atoms (0.11 wt% Pt) have achieved greatly enhanced toluene conversion of 95%, far surpassing most supported Pt photothermal catalysts. The excellent catalytic activity has been disclosed to derive from the synergetic effect oflight-driven thermocatalysis and photocatalysis. The light-driven thermocatalysis predominates and the strong electron transfer from Pt single-atoms to MnO2 improves the activity of surface lattice oxygen to boost the generation of benzoic acid and the mineralization of toluene. Meanwhile, in photocatalytic process, Pt single-atoms accelerate the generation of superoxide radicals (O2-), which facilitate the ring-opening and deep oxidation of toluene. This understanding on the photothermal synergetic mechanism will inspire the design of highly efficient catalysts for VOCs oxidation.

3.
Adv Sci (Weinh) ; 9(33): e2202933, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202760

RESUMO

Acute kidney injury (AKI) is a sudden kidney dysfunction caused by aberrant reactive oxygen species (ROS) metabolism that results in high clinical mortality. The rapid development of ROS scavengers provides new opportunities for AKI treatment. Herein, the use of hydrogen-terminated germanene (H-germanene) nanosheets is reported as an antioxidative defense nanoplatform against AKI in mice. The simulation results show that 2D H-germanene can effectively scavenge ROS through free radical adsorption and subsequent redox reactions. In particular, the H-germanene exhibits high accumulation in injured kidneys, thereby offering a favorable opportunity for treating renal diseases. In the glycerol-induced murine AKI model, H-germanene delivers robust antioxidative protection against ROS attack to maintain normal kidney function indicators without negative influence in vivo. This positive in vivo antioxidative defense in living animals demonstrates that the present H-germanene nanoplatform is a powerful antioxidant against AKI and various anti-inflammatory diseases.


Assuntos
Injúria Renal Aguda , Antioxidantes , Camundongos , Animais , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Rim/metabolismo , Anti-Inflamatórios
4.
Angew Chem Int Ed Engl ; 61(32): e202207226, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638129

RESUMO

A novel Zn-Fe flow battery featuring an Fe3+ reduction reaction (Fe3+ RR)-coupled zinc oxidation, and an Fe2+ oxidation reaction (Fe2+ OR)-coupled hydrogen evolution reaction (HER) system as well, was established. This battery is capable of driving two Fe2+ OR-coupled HER systems in series based on the above Fe2+ /Fe3+ cycling, for efficient self-powered hydrogen evolution. Meanwhile, this Fe2+ /Fe3+ cycling enables the preparation of a multifunctional catalyst, Pt-3@SXNS (siloxene nanosheet), by the Fe2+ OR-promoted dispersion of Pt nanoparticles on SXNS; alternatively, this support could be obtained by Fe3+ RR-assisted exfoliation using Fe3+ from the anolyte of Fe2+ OR-coupled HER. The Pt-3@SXNS catalyst exhibits excellent catalytic activities toward Fe3+ RR in the Zn-Fe flow battery, HER, and Fe2+ OR in the electrolyzer, which is attributed to the strong electronic interaction between Pt and Si. This work offers a new strategy for energy storage and low-cost hydrogen production from acidic wastewater.

5.
Nanoscale ; 14(16): 6171-6183, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35389406

RESUMO

The satisfactory therapeutic effects of chemodynamic therapy (CDT) dependent solely on endogenous hydrogen peroxide (H2O2) from tumor cells are difficult to achieve. This is closely attributed to the high metabolic activity of malignant cancer cells, prompting the rapid self-protection and proliferation. Here, we report a programmed self-assembly multilayered nanostructure, thioglycolic acid (TGA)-Cu coordination nanoparticles with rapid GSH-response characteristics, for intensifying the CDT efficiency and comprehensively inhibiting the tumor metabolic activity via exchanging the TGA ligand with glutathione (GSH) in the tumor cell. In the formulation, TGA, a small toxic molecule, was combined with Cu ions and securely delivered to the destination for inactivating the functional protein by depriving their spatial structure, then inducing the inhibition of metabolism and meiosis. Simultaneously, the oxidative stress that originated from the oxidized glutathione (GSSG)-Cu complex triggering H2O2 compels the cancer cells to perform active and passive death processes in concert with the inhibition of intracellular enzyme activities. Thus, this work is not only expected to be a heuristic strategy for amplifying the therapeutic effect of CDT together with the inhibition of enzyme activity, but also may advance the construction of stimulus-response bio-functional materials.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Nanomedicina , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
Small ; 17(42): e2102113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34524730

RESUMO

Photodynamic therapy (PDT) has attracted tremendous attention due to its advantages such as high safety and effectiveness compared to traditional radiotherapy and chemotherapy. However, the intratumoral hypoxic microenvironment will inevitably compromise the PDT effect of the highly oxygen-dependent type II photosensitizers, implicating the urgent demand for continuous intratumoral oxygenation. Herein, biocompatible photosynthetic cyanobacteria have been modified with inorganic two-dimensional black phosphorus nanosheets (BPNSs) to be a novel bioreactor termed as Cyan@BPNSs. Upon 660 nm laser irradiation, the photosynthetic cyanobacteria generate oxygen continuously in situ through photosynthesis, followed by the photosensitization of BPNSs for activating oxygen into singlet oxygen (1 O2 ), resulting in a large amount of 1 O2 accumulation at the tumor site and the consequent strong tumor cell killing effect both in vitro and in vivo. This work provides an attractive strategy for efficient and biocompatible PDT, meanwhile extends the scope of microbiotic nanomedicine by hybridizing microorganisms with inorganic nanophotosensitizer.


Assuntos
Cianobactérias , Fotoquimioterapia , Linhagem Celular Tumoral , Fósforo , Fármacos Fotossensibilizantes/uso terapêutico , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...