Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 233: 116460, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354931

RESUMO

The aim of the study was to explore the molecular dynamics and transformation pathways of dissolved organic matter (DOM) in sewage sludge (SS) during composting, and the DOM of raw material, material experiencing thermophilic phase and material collected from humification phase were characterized using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. The results indicated that there were approximately 85% of aliphatic/proteins and 75% of carbohydrate preferentially decomposed in the thermophilic phase. Moreover, lignins/carboxylic-rich alicyclic molecules (CRAM) were the main N-containing substances evolved in the decomposition, which leading to a reduction of N/C ratio from 0.073 to 0.041. Whereas aliphatic acids and tryptophan in lignins/CRAM with high oxidizing capacities are preferentially decomposed in the thermophilic phase. As for maturity phase, the carbon of the newly generated compounds (belonging to lignins/CRAM and tannins), possessed an oxidation state that similar to sulfonates and sulfonamides, and these DOM are beneficial for the humic substances formation. Moreover, it was found that the newly formed N2Ox and N3Ox compounds had a more significant contribution to the double bond equivalent (DBE) of the compost, corresponding to 1.0 and 1.7 DBE, respectively. The results would help explore the understanding of DOM transformation and humification during SS composting in the microscopic molecular level.


Assuntos
Compostagem , Esgotos , Matéria Orgânica Dissolvida , Lignina , Substâncias Húmicas
2.
Front Microbiol ; 13: 918634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832814

RESUMO

Feammox-based nitrogen removal technology can reduce energy consumption by aeration and emission of carbon dioxide. However, the huge theoretical demand for Fe(III) becomes a challenge for the further development of Feammox. This study investigated an anammox-derived Feammox process with an intermittent dosage of Fe2O3 and proposed a novel approach to reduce the Fe(III) consumption. The results showed that anammox genera Candidatus Brocadia and Candidatus Kuenenia in the seed anammox sludge significantly decreased after cultivation. The formation of N2 was the dominating pathway in Feammox while that of nitrite and nitrate could be neglected. Batch tests showed that specific Feammox activity of ammonium oxidation was 1.14-9.98 mg N/(g VSS·d). The maximum removal efficiency of ammonium reached 52.3% in the bioreactor with a low dosage of Fe(III) which was only 5.8% of the theoretical demand in Feammox. The removal of ammonium was mainly achieved through Feammox, while partial nitrification/anammox also played a role due to the non-power and unintentional oxygen leakage. The super-low oxygen also responded to the low demand of Fe(III) in the bioreactor because it could trigger the cycle of Fe(III)/Fe(II) by coupling Feammox and chemical oxidation of Fe(II) to Fe(III). Therefore, anammox-derived Feammox can achieve the removal of ammonium with low Fe(III) demand at super-low oxygen.

3.
Environ Int ; 158: 106951, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710733

RESUMO

The high moisture content and perishable organic waste of municipal solid waste (MSW) in China have caused the severe odor nuisance to be one of the crucial reasons for resident complaints. Understanding the environmental risks of odorous compounds lays the foundations for resolving the problems. This study collected concentration data of 86 odorous compounds in five types of MSW processing facilities/equipment which can well represent the whole process of MSW stream, including waste bins and transfer stations for collection, compost plants and anaerobic digestion plants for utilization, and landfills for final disposal. The results revealed that the occupational health risks of odorants were not fully consistent with the compound concentrations and olfactory annoyance. Higher odorous compound concentrations and more severe olfactory annoyance can be found in the MSW utilization and disposal facilities, but the occupational carcinogenic risk (2.79 × 10-5-1.12 × 10-3) was non-negligible along the whole MSW stream. Aromatic hydrocarbons and halogenated hydrocarbons were crucial contributors to the carcinogenic risk of odorous compounds emission from these facilities. Particularly for estimating the adverse impact range of MSW facilities, the carcinogenic risk was the most critical factor, implying impact distance of ∼1.5 km for MSW transfer station and ∼5 km for landfill, and even higher for the regions (such as southwest China) with lower wind speed and higher atmospheric stability. In addition to current regulations, another 5 compounds (acetaldehyde, 1,3,5-trimethylbenzene, 1,2-dichloroethane, acrolein, and benzyl chloride) that displayed high carcinogenic risks were suggested to be concerned. This study provided insights for the policymakers regarding MSW odors management, especially underscoring the importance of considering the health risks of odorous compounds.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , China , Odorantes/análise , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
4.
Chemosphere ; 249: 126212, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088459

RESUMO

The ecological risk of heavy metals (HM) resulting from the use of sewage sludge compost (SSC) as an amendment to flower garden soil (FGS) and to abandoned phosphate mine soil (APMS) influenced by acid rain were simulated in lysimeter trials and the potential ecological risk index (PERI) was evaluated with minor modifications. The use of SSC indeed increased the mobility and release of HMs in FGS and APMS under conditions of acid rain. The leaching dynamics of HMs was found to be influenced by Fe/Al oxides and organic matter (OM) in the soil. The application of SSC as a fertilizer to barren APMS dramatically decreased the mobility of Cr, Cu and Pb by 51-56% due to their retention by particulate organic matter, while the leaching of As, Cd and Ni was increased as the result of competition with OM for available Fe/Al oxides (As) and proton-metal exchange reactions that occurred in HM-OM complexes (Cd and Ni). The ecological risk of FGS and APMS resulting from HM migration was actually low (PERI = 0.07-0.12), but the increased potential ecological risk resulting from the use of SSC were estimated to be moderate (a 16.0-33.5% increase in PERI for SSC-amended FGS) or high (a 140% increase in PERI for SSC-amended APMS). Ni, Cd and Cu were identified as the three main HMs responsible for increasing the ecological risk in soil which was mainly composed of fine-grained particles, whereas Cd and As were key ecological risks HMs in soil that was mainly composed of coarse-grained particles.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Agricultura , China , Compostagem , Fertilizantes , Fosfatos , Esgotos/análise , Solo , Eliminação de Resíduos Líquidos
5.
Bioresour Technol ; 293: 122021, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31514121

RESUMO

The intrinsic reason determining digestion performance of 100-160 °C preheated food waste after recovering floatable oil (FO-recovered FW) was investigated using two-dimensional correlated infrared spectroscopy, three-dimensional fluorescence spectroscopy and high-throughput 16S rRNA amplicon sequencing. The results indicated that thermal temperature significantly affected CH4 production of FO-recovered FW due to different structural alteration degree of starch, protein, cellulose and lipid components. Fragmentation of starch mainly occurred at 100 °C. The hydrolytic and acidogenic rate of starch was promoted and accordingly induced rapid growth of carbohydrate-fermenting bacteria, which resulted in severe acidification. Protein hydrolysis and cellulose H-bonds cleavage occurring at 120-160 °C accelerated the accessible sites interacting with microbial hydrolytic enzymes, and growth of Cloacimonetes and Syntrophomonas enhanced CH4 production. Non-degradable humic acid-like organics remarkably formed at 160 °C caused a carbon loss and digestion inhibiting/deteriorating. Pretreatment at 120 °C was feasible for promoted methane production based on energy assessment.


Assuntos
Alimentos , Metano , Anaerobiose , Reatores Biológicos , RNA Ribossômico 16S , Temperatura
6.
Huan Jing Ke Xue ; 39(6): 2786-2793, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965636

RESUMO

Sewage sludge is rich in organic matter, N, and P and could be used as a soil amendment to improve the status of soil organic matter, soil structural characteristics, and soil water retention capacity after aerobic composting. However, heavy metals in sewage sludge have become the main bottleneck limiting its land application. In addition, with the large-scale exploitation of phosphate rock resources in our region of interest, a large amount of phosphate tailings needs to be disposed and a large area of abandoned mining lands needs to be reclaimed. Phosphate tailings could be auxiliary materials for sewage sludge composting to immobilize heavy metals, and the compost could be applied for revegetation of the abandoned mining lands. The contents of As, Cr, Cu, Ni, Pb, Cd, and Zn were measured, and a successive extraction procedure was used to investigate the change in speciation of heavy metals in the sludge before and after the phosphate-rich composting. pH-dependent leaching tests were carried out to further evaluate the immobilization effects of composting on heavy metals and the release potential under different pH conditions. The results showed that the contents of heavy metals in the compost satisfied the corresponding threshold for land reclamation. Adding phosphate tailings greatly improved the stability of heavy metals during the composting process. The portion of stable residues of Pb, Cd, As, and Zn in the phosphate-rich compost was 84.00%, 58.00%, 68.50%, and 30.93%, respectively, compared with 68.10%, 30.50%, 40.32%, and 16.48% for the control, compost without adding the phosphate tailings. Meanwhile, the maximum leaching potential of As, Ni, Pb, Zn, and Cu in the phosphate-rich compost decreased from 3.692 mg·kg-1, 0.903 mg·kg-1, 0.217 mg·kg-1, 7.225 mg·kg-1, and 8.725 mg·kg-1 to 0.684 mg·kg-1, 0.586 mg·kg-1, 0.071 mg·kg-1, 2.603 mg·kg-1, and 6.935 mg·kg-1in the control, respectively, for pH 6-8.It could be concluded that the addition of phosphate tailings in the sludge composting lowered the risk of heavy metals in sewage sludge compost to make it favorable for beneficial use in abandoned mining land reclamation.


Assuntos
Compostagem , Metais Pesados/química , Fosfatos/química , Esgotos/química , Poluentes do Solo/química , Atmosfera , Solo
7.
Environ Pollut ; 237: 244-252, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29486458

RESUMO

A 3-years field test and laboratory leaching test have been conducted to assess the environmental impact of land application of sewage sludge compost in conjunction with wheat and rice crops. Considering the complexity and variability of field conditions, we compared the result of laboratory test with the field test to understand the accuracy and uncertainty associated with using the laboratory test to evaluate the field scenario. The laboratory test with cycling of compost additions and water percolation was a high time-efficient and feasible method to simulate the annually repeated additions of compost in the field application scenario. The results of laboratory test were congruent to the 3-years field test regarding the leaching characteristics and geochemical speciation of toxic trace elements. Both the laboratory and the field test showed that repeated additions of compost to soils can increase leaching concentrations of toxic trace elements at neutral to alkaline pH. Increased toxic trace elements leaching was caused by the increase of organic matter from compost application and organic matter dissolution at alkaline pH. Uncertainties of the laboratory test mainly included the negligibility of crop growth and the strongly reducing condition formed with continuous percolation procedure.


Assuntos
Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Eliminação de Resíduos Líquidos/métodos , Compostagem/métodos , Esgotos/química
8.
J Hazard Mater ; 343: 19-28, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28934688

RESUMO

A novel multifunctional composite adsorbent which possesses the ability for anion exchange and toxic metal complexation has been synthesized by the hybridization of layered double hydroxides (LDH) and fulvic acid (FA) in this study. The results show that FA with lots of functional groups can be effectively and stably anchored on the surface of LDH through coagulation process without occupying the interlayer of LDH. Therefore, the anion exchange ability remains and the adsorption capacity of Orange II can reach 1.9mmol/g, which is almost as much as stoichiometric anion exchange capacity of pure LDH. Moreover, the composite adsorbent's adsorption capacity of Cu2+, Pb2+, Ni2+ and Cd2+ can also get to 2.25mmol/g, 0.98mmol/g, 0.99mmol/g and 0.16mmol/g respectively with an adsorption preference order of Cu2+>Pb2+>Ni2+>Cd2+. In addition, Orange II and toxic metals are able to be simultaneously removed by this composite adsorbent, and the adsorption of toxic metals can be enhanced by the synergetic adsorption of Orange II. Anion exchange with Cl- in LDH matrix accounts for the adsorption of Orange II, while the adsorption of toxic metal is mainly attributed to the complexation of carboxyl functional group derived from FA.

9.
Bioresour Technol ; 216: 250-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27243602

RESUMO

Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos
10.
J Environ Sci (China) ; 43: 91-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155413

RESUMO

The radioactivity of uranium in radioactive coal bottom ash (CBA) may be a potential danger to the ambient environment and human health. Concerning the limited research on the distribution and mode of occurrence of uranium in CBA, we herein report our investigations into this topic using a number of techniques including a five-step Tessier sequential extraction, hydrogen fluoride (HF) leaching, Siroquant (Rietveld) quantification, magnetic separation, and electron probe microanalysis (EPMA). The Tessier sequential extraction showed that the uranium in the residual and Fe-Mn oxide fractions was dominant (59.1% and 34.9%, respectively). The former was mainly incorporated into aluminosilicates, retained with glass and cristobalite, whereas the latter was especially enriched in the magnetic fraction, of which about 50% was present with magnetite (Fe3O4) and the rest in other iron oxides. In addition, the uranium in the magnetic fraction was 2.6 times that in the non-magnetic fraction. The experimental findings in this work may be important for establishing an effective strategy to reduce radioactivity from CBA for the protection of our local environment.


Assuntos
Cinza de Carvão/química , Germânio , Monitoramento de Radiação , Poluentes Radioativos/análise , Urânio/análise , Microanálise por Sonda Eletrônica , Centrais Elétricas
11.
J Hazard Mater ; 276: 346-52, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24922094

RESUMO

A roast-leach method using CaCl2 and HNO3 to remove uranium and gross radioactivity in coal bottom ash was investigated. Heat treatment of the ash with 100% CaCl2 (900°C, 2h) significantly enhanced uranium leachability (>95%) compared with direct acid-leaching (22.6-25.5%). The removal efficiency of uranium and gross radioactivity increased steeply with increasing CaCl2 content, from 10% to 50%, and a HNO3 leaching time from 5 min to 1h, but remained nearly constant or decreased slightly with increasing CaCl2 dosage >50% or acid-leaching time >1h. The majority of the uranium (87.3%), gross α (92.9%) and gross ß (84.9%) were removed under the optimized roast-leach conditions (50% CaCl2, 1M HNO3 leaching for 1h). The mineralogical characteristics of roasted clinker indicated that molten CaCl2 promoted the incorporation of Ca into silica and silicates and resulted in its progressive susceptibility to acid attack. Uranium and other radionuclides, most likely present in the form of silicates or in association with miscellaneous silicates in the highest density fraction (>2.5g mL(-1)), were probably leached out as the result of the acid decomposition of newly formed "gelatinizing silicates".


Assuntos
Cinza de Carvão , Ácido Nítrico/química , Radioisótopos/isolamento & purificação , Urânio/isolamento & purificação , Cloreto de Cálcio/química
12.
J Environ Manage ; 128: 259-65, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23764507

RESUMO

Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter.


Assuntos
Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos , Biodegradação Ambiental , China , Metais/metabolismo , Consórcios Microbianos , Solo , Microbiologia do Solo , Resíduos Sólidos/análise , Água
13.
Bioresour Technol ; 114: 637-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22497707

RESUMO

Enhanced humification by abiotic catalysts is a potentially promising supplementary composting method for stabilizing organic carbon from biowastes. In this study, the role of steel slag in the transformation of humic precursors was directly characterized by measuring the variance in dissolved organic carbon (DOC), spectroscopic parameters (E(600)), and the concentration and molecular weight change of humic-like substances (HLS) during the process. In addition, a mechanistic study of the process was explored. The results directly showed that steel slag greatly accelerated the formation of HLS. The findings indicate that Fe(III)-and Mn(IV)-oxides in steel slag act as oxidants and substantially enhance the polycondensation of humic precursors. Moreover, the reaction appears to suppress the release of metals from steel slag to a certain extent under acidic conditions. This can be attributed to the cover of HLS on the external surface of steel slag, which is significant for its environmentally sound reuse.


Assuntos
Carbono/química , Substâncias Húmicas/análise , Incineração/métodos , Resíduos Industriais/prevenção & controle , Compostos Inorgânicos/química , Oxigênio/química , Aço/química
14.
Bioresour Technol ; 104: 497-502, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22130079

RESUMO

Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste).


Assuntos
Substâncias Húmicas/análise , Resíduos Industriais/prevenção & controle , Metalurgia , Oxigênio/química , Aço/química , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...