Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Neural Circuits ; 16: 843025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250496

RESUMO

The neuromodulator acetylcholine (ACh) plays an important role in arousal, attention, vigilance, learning and memory. ACh is released during different behavioural states and affects the brain microcircuit by regulating neuronal and synaptic properties. Here, we investigated how a low concentration of ACh (30 µM) affects the intrinsic properties of electrophysiologically and morphologically identified excitatory and inhibitory neurons in layer 4 (L4) of rat barrel cortex. ACh altered the membrane potential of L4 neurons in a heterogeneous manner. Nearly all L4 regular spiking (RS) excitatory neurons responded to bath-application of ACh with a M4 muscarinic ACh receptor-mediated hyperpolarisation. In contrast, in the majority of L4 fast spiking (FS) and non-fast spiking (nFS) interneurons 30 µM ACh induced a depolarisation while the remainder showed a hyperpolarisation or no response. The ACh-induced depolarisation of L4 FS interneurons was much weaker than that in L4 nFS interneurons. There was no clear difference in the response to ACh for three morphological subtypes of L4 FS interneurons. However, in four morpho-electrophysiological subtypes of L4 nFS interneurons, VIP+-like interneurons showed the strongest ACh-induced depolarisation; occasionally, even action potential firing was elicited. The ACh-induced depolarisation in L4 FS interneurons was exclusively mediated by M1 muscarinic ACh receptors; in L4 nFS interneurons it was mainly mediated by M1 and/or M3/5 muscarinic ACh receptors. In a subset of L4 nFS interneurons, a co-operative activation of muscarinic and nicotinic ACh receptors was also observed. The present study demonstrates that low-concentrations of ACh affect different L4 neuron types in a cell-type specific way. These effects result from a specific expression of different muscarinic and/or nicotinic ACh receptors on the somatodendritic compartments of L4 neurons. This suggests that even at low concentrations ACh may tune the excitability of L4 excitatory and inhibitory neurons and their synaptic microcircuits differentially depending on the behavioural state during which ACh is released.


Assuntos
Acetilcolina , Receptores Muscarínicos , Acetilcolina/metabolismo , Animais , Córtex Cerebral/metabolismo , Interneurônios/fisiologia , Neurônios/metabolismo , Ratos , Receptores Muscarínicos/metabolismo
3.
Cereb Cortex ; 32(10): 2095-2111, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34628499

RESUMO

Neocortical layer 6 plays a crucial role in sensorimotor co-ordination and integration through functionally segregated circuits linking intracortical and subcortical areas. We performed whole-cell recordings combined with morphological reconstructions to identify morpho-electric types of layer 6A pyramidal cells (PCs) in rat barrel cortex. Cortico-thalamic (CT), cortico-cortical (CC), and cortico-claustral (CCla) PCs were classified based on their distinct morphologies and have been shown to exhibit different electrophysiological properties. We demonstrate that these three types of layer 6A PCs innervate neighboring excitatory neurons with distinct synaptic properties: CT PCs establish weak facilitating synapses onto other L6A PCs; CC PCs form synapses of moderate efficacy, while synapses made by putative CCla PCs display the highest release probability and a marked short-term depression. For excitatory-inhibitory synaptic connections in layer 6, both the presynaptic PC type and the postsynaptic interneuron type govern the dynamic properties of the respective synaptic connections. We have identified a functional division of local layer 6A excitatory microcircuits which may be responsible for the differential temporal engagement of layer 6 feed-forward and feedback networks. Our results provide a basis for further investigations on the long-range CC, CT, and CCla pathways.


Assuntos
Células Piramidais , Sinapses , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Vias Neurais/fisiologia , Células Piramidais/fisiologia , Ratos , Sinapses/fisiologia
4.
Neuroscience ; 456: 114-130, 2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32540364

RESUMO

In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.


Assuntos
Acetilcolina , Receptores Nicotínicos , Colinérgicos/farmacologia , Terminações Pré-Sinápticas/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica
5.
Front Comput Neurosci ; 14: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676020

RESUMO

Neuron classification is an important component in analyzing network structure and quantifying the effect of neuron topology on signal processing. Current quantification and classification approaches rely on morphology projection onto lower-dimensional spaces. In this paper a 3D visualization and quantification tool is presented. The Density Visualization Pipeline (DVP) computes, visualizes and quantifies the density distribution, i.e., the "mass" of interneurons. We use the DVP to characterize and classify a set of GABAergic interneurons. Classification of GABAergic interneurons is of crucial importance to understand on the one hand their various functions and on the other hand their ubiquitous appearance in the neocortex. 3D density map visualization and projection to the one-dimensional x, y, z subspaces show a clear distinction between the studied cells, based on these metrics. The DVP can be coupled to computational studies of the behavior of neurons and networks, in which network topology information is derived from DVP information. The DVP reads common neuromorphological file formats, e.g., Neurolucida XML files, NeuroMorpho.org SWC files and plain ASCII files. Full 3D visualization and projections of the density to 1D and 2D manifolds are supported by the DVP. All routines are embedded within the visual programming IDE VRL-Studio for Java which allows the definition and rapid modification of analysis workflows.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32116641

RESUMO

Synaptic transmission between neurons is the basic mechanism for information processing in cortical microcircuits. To date, paired recording from synaptically coupled neurons is the most widely used method which allows a detailed functional characterization of unitary synaptic transmission at the cellular and synaptic level in combination with a structural characterization of both pre- and postsynaptic neurons at the light and electron microscopic level. In this review, we will summarize the many applications of paired recordings to investigate synaptic function and structure. Paired recordings have been used to study the detailed electrophysiological and anatomical properties of synaptically coupled cell pairs within a synaptic microcircuit; this is critical in order to understand the connectivity rules and dynamic properties of synaptic transmission. Paired recordings can also be adopted for quantal analysis of an identified synaptic connection and to study the regulation of synaptic transmission by neuromodulators such as acetylcholine, the monoamines, neuropeptides, and adenosine etc. Taken together, paired recordings from synaptically coupled neurons will remain a very useful approach for a detailed characterization of synaptic transmission not only in the rodent brain but also that of other species including humans.

7.
Cereb Cortex ; 30(6): 3528-3542, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32026946

RESUMO

Acetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4ß2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4ß2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.


Assuntos
Acetilcolina/metabolismo , Neocórtex/metabolismo , Células Piramidais/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/fisiologia , Acetilcolina/farmacologia , Animais , Agonistas Colinérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Neocórtex/efeitos dos fármacos , Vias Neurais , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Ratos , Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/efeitos dos fármacos , Receptor Muscarínico M4/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tálamo
8.
Cereb Cortex ; 28(4): 1439-1457, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329401

RESUMO

GABAergic interneurons are notorious for their heterogeneity, despite constituting a small fraction of the neuronal population in the neocortex. Classification of interneurons is crucial for understanding their widespread cortical functions as they provide a complex and dynamic network, balancing excitation and inhibition. Here, we investigated different types of non-fast-spiking (nFS) interneurons in Layer 4 (L4) of rat barrel cortex using whole-cell patch-clamp recordings with biocytin-filling. Based on a quantitative analysis on a combination of morphological and electrophysiological parameters, we identified 5 distinct types of L4 nFS interneurons: 1) trans-columnar projecting interneurons, 2) locally projecting non-Martinotti-like interneurons, 3) supra-granular projecting Martinotti-like interneurons, 4) intra-columnar projecting VIP-like interneurons, and 5) locally projecting neurogliaform-like interneurons. Trans-columnar projecting interneurons are one of the most striking interneuron types, which have not been described so far in Layer 4. They feature extensive axonal collateralization not only in their home barrel but also in adjacent barrels. Furthermore, we identified that most of the L4 nFS interneurons express somatostatin, while few are positive for the transcription factor Prox1. The morphological and electrophysiological characterization of different L4 nFS interneuron types presented here provides insights into their synaptic connectivity and functional role in cortical information processing.


Assuntos
Córtex Cerebral/citologia , Neurônios GABAérgicos/fisiologia , Potenciais da Membrana/fisiologia , Rede Nervosa/fisiologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Dendritos/fisiologia , Feminino , Imageamento Tridimensional , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Modelos Neurológicos , Técnicas de Patch-Clamp , Análise de Componente Principal , Ratos , Peptídeo Intestinal Vasoativo/metabolismo
9.
Neuroscience ; 368: 132-151, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28528964

RESUMO

Recent years have seen substantial progress in studying the structural and functional properties of GABAergic interneurons and their roles in the neuronal networks of barrel cortex. Although GABAergic interneurons represent only about 12% of the total number of neocortical neurons, they are extremely diverse with respect to their structural and functional properties. It has become clear that barrel cortex interneurons not only serve the maintenance of an appropriate excitation/inhibition balance but also are directly involved in sensory processing. In this review we present different interneuron types and their axonal projection pattern framework in the context of the laminar and columnar organization of the barrel cortex. The main focus is here on the most prominent interneuron types, i.e. basket cells, chandelier cells, Martinotti cells, bipolar/bitufted cells and neurogliaform cells, but interneurons with more unusual axonal domains will also be mentioned. We describe their developmental origin, their classification with respect to molecular, morphological and intrinsic membrane and synaptic properties. Most importantly, we will highlight the most prominent circuit motifs these interneurons are involved in and in which way they serve feed-forward inhibition, feedback inhibition and disinhibition. Finally, this will be put into context to their functional roles in sensory signal perception and processing in the whisker system and beyond.


Assuntos
Axônios/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Neurônios GABAérgicos/classificação , Interneurônios/classificação , Córtex Somatossensorial/citologia
10.
Cereb Cortex ; 27(9): 4411-4422, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522071

RESUMO

Adenosine is considered to be a key regulator of sleep homeostasis by promoting slow-wave sleep through inhibition of the brain's arousal centers. However, little is known about the effect of adenosine on neuronal network activity at the cellular level in the neocortex. Here, we show that adenosine differentially modulates synaptic transmission between different types of neurons in cortical layer 4 (L4) through activation of pre- and/or postsynaptically located adenosine A1 receptors. In recurrent excitatory connections between L4 spiny neurons, adenosine suppresses synaptic transmission through activation of both pre- and postsynaptic A1 receptors. In reciprocal excitatory and inhibitory connections between L4 spiny neurons and interneurons, adenosine strongly suppresses excitatory transmission via activating presynaptic A1 receptors but only slightly suppresses inhibitory transmission via activating postsynaptic A1 receptors. Adenosine has no effect on inhibitory transmission between L4 interneurons. The effect of adenosine is concentration dependent and first visible at a concentration of 1 µM. The effect of adenosine is blocked by the specific A1 receptor antagonist, 8-cyclopentyltheophylline or the nonspecific adenosine receptor antagonist, caffeine. By differentially affecting excitatory and inhibitory synaptic transmission, adenosine changes the excitation-inhibition balance and causes an overall shift to lower excitability in L4 primary somatosensory (barrel) cortical microcircuits.


Assuntos
Adenosina/farmacologia , Córtex Somatossensorial/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Adenosina/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos Wistar , Receptor A1 de Adenosina/efeitos dos fármacos , Sono/efeitos dos fármacos , Transmissão Sináptica/fisiologia
11.
Cereb Cortex ; 27(2): 1011-1026, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637449

RESUMO

The fate of the subplate (SP) is still a matter of debate. The SP and layer 6 (which is ontogenetically the oldest and innermost neocortical lamina) develop coincidentally. Yet, the function of sublamina 6B is largely unknown. It has been suggested that it consists partly of neurons from the transient SP, however, experimental evidence for this hypothesis is still missing. To obtain first insights into the neuronal complement of layer 6B in the somatosensory rat barrel cortex, we used biocytin stainings of SP neurons (aged 0-4 postnatal days, PND) and layer 6B neurons (PND 11-35) obtained during in vitro whole-cell patch-clamp recordings. Neurons were reconstructed for a quantitative characterization of their axonal and dendritic morphology. An unsupervised cluster analysis revealed that the SP and layer 6B consist of heterogeneous but comparable neuronal cell populations. Both contain 5 distinct spine-bearing cell types whose relative fractions change with increasing age. Pyramidal cells were more prominent in layer 6B, whereas non-pyramidal neurons were less frequent. Because of the high morphological similarity of SP and layer 6B neurons, we suggest that layer 6B consists of persistent non-pyramidal neurons from the SP and cortical L6B pyramidal neurons.


Assuntos
Neocórtex/anatomia & histologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Axônios/ultraestrutura , Polaridade Celular , Dendritos/fisiologia , Dendritos/ultraestrutura , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Processamento de Imagem Assistida por Computador , Neocórtex/citologia , Neocórtex/diagnóstico por imagem , Neurônios/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento
12.
Cereb Cortex ; 26(4): 1569-1579, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595180

RESUMO

Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca(2+) or Na(+) action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.


Assuntos
Axônios/fisiologia , Dendritos/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Potenciais da Membrana , Ratos , Ratos Wistar
13.
J Vis Exp ; (95): 52358, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25650985

RESUMO

The combination of patch clamp recordings from two (or more) synaptically coupled neurons (paired recordings) in acute brain slice preparations with simultaneous intracellular biocytin filling allows a correlated analysis of their structural and functional properties. With this method it is possible to identify and characterize both pre- and postsynaptic neurons by their morphology and electrophysiological response pattern. Paired recordings allow studying the connectivity patterns between these neurons as well as the properties of both chemical and electrical synaptic transmission. Here, we give a step-by-step description of the procedures required to obtain reliable paired recordings together with an optimal recovery of the neuron morphology. We will describe how pairs of neurons connected via chemical synapses or gap junctions are identified in brain slice preparations. We will outline how neurons are reconstructed to obtain their 3D morphology of the dendritic and axonal domain and how synaptic contacts are identified and localized. We will also discuss the caveats and limitations of the paired recording technique, in particular those associated with dendritic and axonal truncations during the preparation of brain slices because these strongly affect connectivity estimates. However, because of the versatility of the paired recording approach it will remain a valuable tool in characterizing different aspects of synaptic transmission at identified neuronal microcircuits in the brain.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Animais , Axônios , Dendritos/fisiologia , Junções Comunicantes/fisiologia , Camundongos , Ratos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
14.
Brain Struct Funct ; 220(6): 3185-209, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25084745

RESUMO

Excitatory layer 4 (L4) neurons in the 'barrel field' of the rat somatosensory cortex represent an important component in thalamocortical information processing. However, no detailed information exists concerning the quantitative geometry of synaptic boutons terminating on these neurons. Thus, L4 synaptic boutons were investigated using serial ultrathin sections and subsequent quantitative 3D reconstructions. In particular, parameters representing structural correlates of synaptic transmission and plasticity such as the number, size and distribution of pre- and postsynaptic densities forming the active zone (AZ) and of the three functionally defined pools of synaptic vesicles were analyzed. L4 synaptic boutons varied substantially in shape and size; the majority had a single, but large AZ with opposing pre- and postsynaptic densities that matched perfectly in size and position. More than a third of the examined boutons showed perforations of the postsynaptic density. Synaptic boutons contained on average a total pool of 561 ± 108 vesicles, with ~5% constituting the putative readily releasable, ~23% the recycling, and the remainder the reserve pool. These pools are comparably larger than other characterized central synapses. Synaptic complexes were surrounded by a dense network of fine astrocytic processes that reached as far as the synaptic cleft, thus regulating the temporal and spatial glutamate concentration, and thereby shaping the unitary EPSP amplitude. In summary, the geometry and size of AZs, the comparably large readily releasable and recycling pools, together with the tight astrocytic ensheathment, may explain and contribute to the high release probability, efficacy and modulation of synaptic transmission at excitatory L4 synaptic boutons. Moreover, the structural variability as indicated by the geometry of L4 synaptic boutons, the presence of mitochondria and the size and shape of the AZs strongly suggest that synaptic reliability, strength and plasticity is governed and modulated individually at excitatory L4 synaptic boutons.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Vesículas Sinápticas/fisiologia
15.
Cereb Cortex ; 25(3): 772-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24108800

RESUMO

The neuromodulator adenosine is widely considered to be a key regulator of sleep homeostasis and an indicator of sleep need. Although the effect of adenosine on subcortical areas has been previously described, the effects on cortical neurons have not been addressed systematically to date. To that purpose, we performed in vitro whole-cell patch-clamp recordings and biocytin staining of pyramidal neurons and interneurons throughout all layers of rat prefrontal and somatosensory cortex, followed by morphological analysis. We found that adenosine, via the A1 receptor, exerts differential effects depending on neuronal cell type and laminar location. Interneurons and pyramidal neurons in layer 2 and a subpopulation of layer 3 pyramidal neurons that displayed regular spiking were insensitive to adenosine application, whereas other pyramidal cells in layers 3-6 were hyperpolarized (range 1.2-10.8 mV). Broad tufted pyramidal neurons with little spike adaptation showed a small adenosine response, whereas slender tufted pyramidal neurons with substantial adaptation showed a bigger response. These studies of the action of adenosine at the postsynaptic level may contribute to the understanding of the changes in cortical circuit functioning that take place between sleep and awakening.


Assuntos
Adenosina/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/fisiologia , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A1 de Adenosina , Animais , Feminino , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 2): 056115, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21230553

RESUMO

We investigate the coevolution dynamics of node activities and coupling strengths in coupled chaotic oscillators via a simple threshold adaptive scheme. The coupling strength is synchronous activity regulated, which in turn is able to boost the synchronization remarkably. In the case of weak coupling, the globally coupled oscillators present a highly clustered functional connectivity with a power-law distribution in the tail with γ≃3.1 , while for strong coupling, they self-organize into a network with a heterogeneously rich connectivity at the onset of synchronization but exhibit rather sparse structure to maintain the synchronization in noisy environment. The relevance of the results is briefly discussed.


Assuntos
Dinâmica não Linear , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...