Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1374607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994206

RESUMO

Background: Lianhua Qingwen (LHQW) granule, a botanical drug preparation, is frequently utilized as an adjuvant treatment for mycoplasma pneumoniae pneumonia (MPP). Nevertheless, the clinical efficacy and safety of this treatment remain uncertain. Purpose: This study aims to evaluate the efficacy and safety of LHQW granule combined with azithromycin (AZM) in treating MPP in children. Method: To identify all randomized controlled trials (RCTs) of LHQW granule plus AZM, a search was conducted in eight Chinese and English databases (CNKI, Wan Fang, VIP, Sinomed, PubMed, Embase, Web of Science, and Cochrane Library) from their inception until 25 December 2023. Meta-regression and subgroup analysis were employed to investigate heterogeneity. Sensitivity analysis and trial sequential analysis (TSA) were conducted to assess the robustness of the findings. Additionally, the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was utilized to evaluate the quality of evidence. Results: A total of 15 RCTs involving 1909 participants were included in this study. The meta-analysis results indicated combination therapy of LHQW granule and AZM is significant different from AZM alone in both efficacy and safety, which are specifically observed in the following outcomes: response rate (RR = 1.17, 95% CI: 1.12 to 1.22, p < 0.01), antipyretic time (MD = -1.32, 95% CI: -1.66 to -0.98, p < 0.01), cough disappearance time (MD = -1.76, 95% CI: -2.47 to -1.05, p < 0.01), pulmonary rale disappearance time (MD = -1.54, 95% CI: -2.06 to -1.02, p < 0.01), c-reactive protein (CRP) (MD = -5.50, 95% CI: -6.92 to -4.07, p < 0.01), procalcitonin (PCT) (MD = -0.31, 95% CI: -0.38 to -0.24, p < 0.01), interleukin 6 (IL-6) (MD = -5.97, 95% CI: -7.39 to -4.54, p<0.01), tumor necrosis factor α (TNF-α) (MD = -5.74, 95% CI: -7.44 to -4.04, p < 0.01), forced vital capacity (FVC) (SMD = 0.48, 95% CI: 0.34 to 0.62, p < 0.01), forced expiratory volume in the first second (FEV1) (SMD = 0.55, 95% CI: 0.44 to 0.67, p < 0.01), FEV1/FVC (SMD = 0.49, 95% CI: 0.32 to 0.67, p < 0.01), CD4+ T lymphocyte (CD4+) (MD = 4.04, 95% CI: 3.09 to 4.98, p < 0.01), CD8+ T lymphocyte (CD8+) (MD = -3.32, 95% CI: 4.27 to 2.38, p < 0.01) and adverse events (RR = 0.65, 95% CI: 0.43 to 0.96, p < 0.01). Conclusion: The combination therapy of LHQW granule and AZM may be a better strategy to treat MPP in children. However, the clinical efficacy and safety of LHQW granule require further validation. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/.

2.
Front Pediatr ; 11: 1132885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303750

RESUMO

Objective: To explore the relationship between common air pollution and common birth defects, and to provide reference for the prevention of birth defects. Methods: We conducted a case-control study in Xiamen, a city in southeastern China from 2019 to 2020. Logistics regression was used to analyze the relationship between sulfur dioxide(SO2), fine particulate matter 2.5(PM2.5), nitrogen dioxide(NO2), ozone(O3), carbon monoxide(CO) and the occurrence of common birth defects such as congenital heart disease, facial cleft, and finger deformity. Results: SO2 significantly increased the risk of birth defects such as congenital heart disease, cleft lip and/or cleft palate, and ear deformity in the first and second months of pregnancy. Conclusion: Exposure to common air pollutants increases the risk of birth defects, and SO2 significantly affects the occurrence of birth defects in the first two months of pregnancy.

3.
Animals (Basel) ; 12(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35049836

RESUMO

BACKGROUND: As a unique skin derivative of birds, the uropygial gland has a potential role in maintaining feather health and appearance. Cage-reared ducks usually have a worse feather condition than floor-reared ducks. We suspected that the metabolic components in the uropygial gland might play a vital role in their feather conditions. METHODS: Herein, the uropygial glands of floor- and cage-reared ducks were weighed, and a nontargeted metabolic analysis was performed. RESULTS: At 20 weeks of age, the relative weight of floor-reared duck uropygial glands was significantly higher than that of cage-reared ducks, indicating that the floor rearing system is better for inducing the development of uropygial glands. The nontargeted metabolic data revealed 1190 and 1149 differential metabolites under positive and negative ion modes, respectively. Among them, 49 differential metabolites were annotated between the two rearing systems. Three sulfur-containing amino acids, namely, 2-ketobutyric acid, L-aspartate-semialdehyde, and N-formyl-L-methionine, and some lipids, including inositol and sphingosine, might be responsible for the changes in plumage appearance among the various rearing conditions. CONCLUSIONS: The results of our study revealed the differences in the metabolic components of the uropygial gland in ducks reared under different rearing systems and found metabolic components to be possibly responsible for the poor feather condition of caged ducks.

4.
ACS Omega ; 5(34): 21669-21678, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905402

RESUMO

Air-light hydrocarbon mixing gas with pentane as the main component is recognized as the "fourth urban gas" by the Chinese government. However, leakage may occur because of inadvertent human operation, and in this case, it is very easy to cause explosion. This paper mainly studies the changes in reactants, products, and free radicals during the explosion of pentane, especially the effects of oxygen and carbon monoxide concentrations on human body in this environment. In actual situations, excessive leakage of pentane is predominant. Once an explosion occurs, oxygen will be quickly consumed, and the concentration of carbon monoxide will rise abruptly. The high temperature resulting from the explosion can cause carbon dioxide to rarely react with carbon atoms to form carbon monoxide through the reaction of CO2 + C = 2CO. The research studies on the three major free radicals including hydrogen radical, oxygen radical, and hydroxyl radical are performed to provide theoretical support for preventing the chain reaction from further expanding the impact of explosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...