Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(3): 4643-4651, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630692

RESUMO

High-entropy transition-metal oxides are potentially interesting cathode materials for lithium-ion batteries, among which high-entropy layered oxides are considered highly promising because there exist two-dimensional ion transport channels that may, in principle, enable fast ion transport. However, high-entropy layered oxides reported to date exhibit fast capacity fading in initial cycles and thus are hardly of any practical value. Here, we investigate the structural and property changes of a five-element layered oxide, LiNi0.2Co0.2Mn0.2Fe0.2Al0.2O2, using electrochemical and physical characterization techniques. It is revealed that the M3O4 phase formed at the surface of LiNi0.2Co0.2Mn0.2Fe0.2Al0.2O2 due to the migration of metal ions from octahedral sites of the transition-metal layer to tetrahedral 8a and octahedral sites of the lithium layer hinders the intercalation of lithium ion, which leads to the low initial Coulombic efficiency and fast decay of reversible capacity. This mechanism could be generally applicable to other high-entropy layered oxides with different elemental compositions.

2.
iScience ; 26(1): 105890, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691611

RESUMO

Searching for an efficient, durable, and low cost catalyst toward oxygen reduction reaction (ORR) is of paramount importance for the application of fuel cell technology. Herein, PtFeCoNiCu high-entropy alloy nanoparticles (PFCNC-HEA) is reported as electrocatalyst toward ORR. It shows remarkable ORR catalytic mass activity of 1.738 A mg-1 Pt at 0.90 V, which is 15.8 times higher than that of the state-of-art commercial Pt/C catalyst. It also exhibits outstanding stability with negligible voltage decay (3 mV) after 10k cycles accelerated durability test. High ORR activity is ascribed to the ligand effect caused by polymetallic elements, the optimization of the surface electronic structure, and the formation of multiple active sites on the surface. In the proton exchange membrane fuel cell setup, this cell delivers a power density of up to 1.380 W cm-2 with a cathodic Pt loading of 0.03 mgPt cm-2, demonstrating a promising catalyst design direction for highly efficient ORR.

3.
Nat Commun ; 14(1): 513, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720869

RESUMO

The hydrogenation of CO2 or CO to single organic product has received widespread attentions. Here we show a highly efficient and selective catalyst, Mo3S4@ions-ZSM-5, with molybdenum sulfide clusters ([Mo3S4]n+) confined in zeolitic cages of ZSM-5 molecular sieve for the reactions. Using continuous fixed bed reactor, for CO2 hydrogenation to methanol, the catalyst Mo3S4@NaZSM-5 shows methanol selectivity larger than 98% at 10.2% of carbon dioxide conversion at 180 °C and maintains the catalytic performance without any degeneration during continuous reaction of 1000 h. For CO hydrogenation, the catalyst Mo3S4@HZSM-5 exhibits a selectivity to C2 and C3 hydrocarbons stably larger than 98% in organics at 260 °C. The structure of the catalysts and the mechanism of COx hydrogenation over the catalysts are fully characterized experimentally and theorectically. Based on the results, we envision that the Mo3S4@ions-ZSM-5 catalysts display the importance of active clusters surrounded by permeable materials as mesocatalysts for discovery of new reactions.

4.
Angew Chem Int Ed Engl ; 61(52): e202212703, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36321806

RESUMO

Effective adsorption and speedy surface reactions are vital requirements for efficient active sites in catalysis, but it remains challenging to maximize these two functions simultaneously. We present a solution to this issue by designing a series of atom-pair catalytic sites with tunable electronic interactions. As a case study, NO selective reduction occurring on V1 -W1 /TiO2 is chosen. Experimental and theoretical results reveal that the synergistic electron effect present between the paired atoms enriches high-energy spin charge around the Fermi level, simultaneously rendering reactant (NH3 or O2 ) adsorption more effective and subsequent surface reactions speedier as compared with single V or W atom alone, and hence higher reaction rates. This strategy enables us to rationally design a high-performance V1 -Mo1 /TiO2 catalyst with optimized vanadium(IV)-molybdenum(V) electronic interactions, which has exceptional activity significantly higher than the commercial or reported catalysts.

5.
Angew Chem Int Ed Engl ; 61(36): e202207807, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35789179

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR) on metal-free catalysts is an attractive alternative to the industrial Haber-Bosch process. However, the state-of-the-art metal-free electrocatalysts still suffer from low Faraday efficiencies and low ammonia yields. Herein, we present a molecular design strategy to develop a defective boron carbon nitride (BCN) catalyst with the abundant unsaturated B and N atoms as Lewis acid and base sites, which upgrades the catalyst from a single "Lewis acid catalysis" to "frustrated Lewis pairs (FLPs) catalysis." 14 N2 /15 N2 exchange experiments and density functional theory (DFT) calculations reveal that FLPs can adsorb an N2 molecule to form a six-membered ring intermediate, which enables the cleavage of N2 via a pull-pull effect, thereby significantly reducing the energy barrier to -0.28 eV. Impressively, BCN achieves a high Faraday efficiency of 18.9 %, an ammonia yield of 20.9 µg h-1 mg-1 cat. , and long-term durability.

6.
Science ; 376(6593): 615-620, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511983

RESUMO

The ammoximation of cyclohexanone using preformed hydrogen peroxide (H2O2) is currently applied commercially to produce cyclohexanone oxime, an important feedstock in nylon-6 production. We demonstrate that by using supported gold-palladium (AuPd) alloyed nanoparticles in conjunction with a titanium silicate-1 (TS-1) catalyst, H2O2 can be generated in situ as needed, producing cyclohexanone oxime with >95% selectivity, comparable to the current industrial route. The ammoximation of several additional simple ketones is also demonstrated. Our approach eliminates the need to transport and store highly concentrated, stabilized H2O2, potentially achieving substantial environmental and economic savings. This approach could form the basis of an alternative route to numerous chemical transformations that are currently dependent on a combination of preformed H2O2 and TS-1, while allowing for considerable process intensification.

7.
Nat Commun ; 13(1): 2031, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440112

RESUMO

All solid-state lithium batteries (SSLBs) are poised to have higher energy density and better safety than current liquid-based Li-ion batteries, but a central requirement is effective ionic conduction pathways throughout the entire cell. Here we develop a catholyte based on an emerging class of porous materials, porous organic cages (POCs). A key feature of these Li+ conducting POCs is their solution-processibility. They can be dissolved in a cathode slurry, which allows the fabrication of solid-state cathodes using the conventional slurry coating method. These Li+ conducting cages recrystallize and grow on the surface of the cathode particles during the coating process and are therefore dispersed uniformly in the slurry-coated cathodes to form a highly effective ion-conducting network. This catholyte is shown to be compatible with cathode active materials such as LiFePO4, LiCoO2 and LiNi0.5Co0.2Mn0.3O2, and results in SSLBs with decent electrochemical performance at room temperature.

8.
Adv Mater ; 34(11): e2109564, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997636

RESUMO

Lithium-rich transition metal oxides (LLOs) can deliver high specific capacity over 250 mAh g-1 , stemming from additional contribution of oxygen redox. However, the formation of O(2- n )- (0 < n < 2) species and even oxygen gas during the deep oxidation stage leads to progressive structural transformation that cause voltage decay/hysteresis, sluggish kinetics, and poor thermostability, preventing real-world application of LLOs. Therefore, the substantive key relies on enhancing the anionic redox stability in LLOs. Here, a sulfuration procedure of LLOs (S-LLOs) is proposed, in which sulfur anions are incorporated into oxygen sites in the lattice structure and form polyanions on the surface. Proved by structural characterizations and density functional theory (DFT) calculations, sulfur anions in the interior lattice can reversibly participate in the redox process and enhance the integral coordination stability by mitigating undesired oxygen redox. Moreover, S polyanions at the surface form a protecting layer for interfacial stability. The electrochemical measurements indicate that S-LLO demonstrates a high discharge capacity of 307.8 mAh g-1 , an outstanding capacity retention rate of 91.5% after 200 cycles, along with excellent voltage maintenance, rate capability, and thermostability. The sulfuration process of LLOs with multianionic redox mechanism highlights a promising strategy to design novel high-energy-density cathode materials with superior cycling performance.

9.
Nano Lett ; 21(24): 10354-10360, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34860028

RESUMO

All-solid-state sodium batteries (ASSSBs) are attractive alternatives to lithium-ion batteries for grid-scale energy storage due to their high safety and ubiquitous distribution of Na sources. A critical component for ASSSB is sodium-ion conducting solid-state electrolyte (SSE). Here, we report a high-performance sodium-ion SSE with the recently developed bulk interfacial superionic conductor (BISC) concept. The ionic conductivity and areal conductance of the Na+ BISC at 25 °C reaches 6.5 × 10-4 S cm-1 and 260 mS cm-2, respectively. Using NaxCo0.7Mn0.3O2 (x ≈ 1.0, NaCMO) as the cathode active material, all-solid-state Na||NaCMO batteries exhibiting small overpotential and ∼180 cycle life are demonstrated under room temperature. This approach may also be used to prepare other metal ion, such as Mg2+, Al3+, and K+, based all-solid-state batteries.

10.
ACS Appl Mater Interfaces ; 13(3): 3793-3804, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33448216

RESUMO

P2-Na0.67Ni0.33Mn0.67O2 presents high working voltage with a theoretical capacity of 173 mAh g-1. However, the lattice oxygen on the particle surface participates in the redox reactions when the material is charged over 4.22 V. The resulting oxidized oxygen aggravates the electrolyte decomposition and transition metal dissolution, which cause severe capacity decay. The commonly reported cation substitution methods enhance the cycle stability by suppressing the high voltage plateau but lead to lower average working voltage and reduced capacity. Herein, we stabilized the lattice oxygen by a small amount of Sn substitution based on the strong Sn-O bond without sacrificing the high voltage performance and further protected the particle surface by polypyrrole (PPy) coating. The obtained Na0.67Ni0.33Mn0.63Sn0.04O2@PPy (3.3 wt %) composite showed excellent cycling stability with a reversible capacity of 137.6 (10) and 120.0 mAh g-1 (100 mA g-1) with a capacity retention of 95% (10 mA g-1, 50 cycles) and 82.5% (100 mA g-1, 100 cycles), respectively. The present work indicates that slight Sn substitution combined with PPy coating could be an effective approach to achieving superior cycling stability for high-voltage layered transition metal oxides.

11.
J Nanosci Nanotechnol ; 18(7): 4982-4986, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442682

RESUMO

NaTaO3/reduced graphene oxide (RGO) composite were prepared via a two-step hydrothermal method. The as-prepared NaTaO3/RGO composite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and X-ray photoelectron spectroscopy (XPS). The results indicated the reduction of graphene oxide and the chemical bonding between RGO and NaTaO3 are achieved simultaneously. As a result, NaTaO3/RGO composite possessed efficient charge separation properties. Hence, in the photocatalytic measurement toward the H2 production from an aqueous Na2S/Na2SO3 solution under UV illumination, a significant improvement in the H2 production rate was observed over NaTaO3/RGO composite, compared to the pure NaTaO3 and mechanically mixed NaTaO3-RGO composite with the same RGO content. In particular, the photocatalytic H2 production rate over NaTaO3/2%RGO with RGO content of 2 wt% was 3.82 times higher than that of pure NaTaO3. Moreover, the photocatalytic hydrogen production performance of NaTaO3/2%RGO was rather stable. A plausible electron transfer mechanism was proposed to discuss the improved photocatalytic H2 production performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...