Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140329, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38991239

RESUMO

Recently, fiber-based and functional paper food packaging has garnered significant attention for its versatility, excellent performance, and potential to provide sustainable solutions to the food packaging industry. Fiber-based food packaging is characterized by its large surface area, adjustable porosity and customizability, while functional paper-based food packaging typically exhibits good mechanical strength and barrier properties. This review summarizes the latest research progress on food packaging based on fibers and functional paper. Firstly, the raw materials used for preparing fiber and functional paper, along with their physical and chemical properties and roles in food packaging, were discussed. Subsequently, the latest advancements in the application of fiber and paper materials in food packaging were introduced. This paper also discusses future research directions and potential areas for improvement in fiber and functional paper food packaging to further enhance their effectiveness in ensuring food safety, quality, and sustainability.

2.
Nano Lett ; 24(18): 5498-5505, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619556

RESUMO

Revealing low-dimensional material growth dynamics is critical for crystal growth engineering. However, in a practical high-temperature growth system, the crystal growth process is a black box because of the lack of heat-resistant imaging tools. Here, we develop a heat-resistant optical microscope and embed it in a chemical vapor deposition (CVD) system to investigate two-dimensional (2D) crystal growth dynamics. This in situ optical imaging CVD system can tolerate temperatures of ≤900 °C with a spatial resolution of ∼1 µm. The growth of monolayer MoS2 crystals was studied as a model for 2D crystal growth. The nucleation and growth process have been imaged. Model analysis and simulation have revealed the growth rate, diffusion coefficient, and spatial distribution of the precursor. More importantly, a new vertex-kink-ledge model has been suggested for monolayer crystal growth. This work provides a new technique for in situ microscopic imaging at high temperatures and fundamental insight into 2D crystal growth.

3.
RSC Adv ; 14(7): 4568-4574, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312728

RESUMO

Photoelectrochemical water splitting (PEC-WS) has attracted considerable attention owing to its low energy consumption and sustainable nature. Constructing semiconductor heterojunctions with controllable band structure can effectively facilitate photogenerated carrier separation. In this study, a FTO/ZnO/Cu2O/Ag@SiO2 photoanode with a Cu2O/ZnO p-n heterojunction and Ag@SiO2 nanoparticles is constructed to investigate its PEC-WS performance. Compared with a bare ZnO photoanode, the photocurrent density of the FTO/ZnO/Cu2O/Ag@SiO2 photoanode (0.77 mA cm-2) at 1.23 VRHE exhibits an increment of 88%, and a cathodic shift of 0.1 V for the on-set potential (0.4 VRHE). Detailed photoelectrochemical analyses reveal that the Cu2O/ZnO p-n heterojunction formed between Cu2O and ZnO can effectively promote photogenerated carrier separation. The surface plasmonic effect of the Ag@SiO2 nanoparticles can further promote the photogenerated carrier transfer efficiency, which synergistically improves the PEC-WS performance.

4.
Small ; 20(27): e2310972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282180

RESUMO

Recently, aqueous zinc-ion batteries with conversion mechanisms have received wide attention in energy storage systems on account of excellent specific capacity, high power density, and energy density. Unfortunately, some characteristics of cathode material, zinc anode, and electrolyte still limit the development of aqueous zinc-ion batteries possessing conversion mechanism. Consequently, this paper provides a detailed summary of the development for numerous aqueous zinc-based batteries: zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries. Meanwhile, the reaction conversion mechanism of zinc-based batteries with conversion mechanism and the research progress in the investigation of composite cathode, zinc anode materials, and selection of electrolytes are systematically introduced. Finally, this review comprehensively describes the prospects and outlook of aqueous zinc-ion batteries with conversion mechanism, aiming to promote the rapid development of aqueous zinc-based batteries.

5.
RSC Adv ; 13(49): 34464-34474, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38024984

RESUMO

Alloying can effectively modify electronic and optical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). However, efficient and simple methods to synthesize atomically thin TMD alloys need to be further developed. In this study, we synthesized 25 monolayer MoxW(1-x)S2ySe2(1-y) alloys by using a new liquid phase edge epitaxy (LPEE) growth method with high controllability. This straightforward approach can be used to obtain monolayer materials and operates on a self-limiting growth mechanism. The process allows the liquid solution to come into contact with the two-dimensional grains only at their edges, resulting in epitaxy confined only along the in-plane direction, which produces exclusively monolayer epitaxy. By controlling the weight ratio of MoS2/WSe2 (MoSe2/WS2), 25 monolayer MoxW(1-x)S2ySe2(1-y) alloys with different atomic ratios can be obtained on sapphire substrates, with band gap ranging from WS2 (1.55 eV) to MoSe2 (1.99 eV) and a continuously broad spectrum ranging from 623 nm to 800 nm. By adjusting the alloy composition, the carrier type and carrier mobility of alloy-based field-effect transistors can be modulated. In particular, the adjustable conductivity of MoxW(1-x)S2ySe2(1-y) alloys from n-type to bipolar type is achieved for the first time. This general synthetic strategy provides a foundation for the development of monolayer TMD alloys with multiple components and various 2D materials.

6.
Langmuir ; 39(43): 15319-15327, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37846863

RESUMO

Adsorption is an effective method for the treatment of heavy metal ions in water; however, the existing adsorbents are complicated to prepare, and costly and difficult to recover. In this work, a 3D wood microfilter was prepared by modifying wood for the removal of heavy metal contaminants from water. First, a green deep eutectic solvent was used to remove lignin from beech wood. Then citric acid and l-cysteine were sequentially used to graft carboxyl and sulfhydryl groups (-SHs) on the surface of cellulose. Finally, a three-dimensional wood microfilter with an abundant porous structure and adsorption sites was formed. The adsorption kinetics and adsorption isotherms of heavy metal ions on the 3D wood microfilter were systematically investigated using Cu2+ and Cd2+ as model species. The results showed that the 3D wood microfilter had a fast adsorption rate and high saturation capacity for both Cu2+ and Cd2+. Based on the advantages of easy processing and multilayer assembly and stacking, a three-layer wood microfilter was designed to achieve high flux rate (1.53 × 103 L m-2 h-1) and high efficiency (>98%) for the removal of heavy metal ions in water. The enhancement mechanism of the adsorption process of Cu2+ and Cd2+ by the 3D wood microfilter was investigated using SEM and EDS, FTIR, and XPS characterization. The simple synthesis method and high adsorption efficiency of this wood microfilter provide a new strategy for the preparation of cheap, efficient, and recyclable adsorbents for heavy metal ions in water.

7.
J Colloid Interface Sci ; 652(Pt B): 2139-2146, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703683

RESUMO

Capacitive deionization (CDI) is perceived as a promising technology for freshwater production owing to its environmentally friendly nature and low energy consumption. To date, the development of high-performance electrode materials represents the foremost challenge for CDI technology. In this work, the porous bismuthene/MXene (P-Bi-ene/MXene) heterostructure was synthesized using a simple interfacial self-assembly method with two-dimensional (2D) bismuthene and Ti3C2Tx MXene. Within the P-Bi-ene/MXene heterostructure, the porous structure can increase the active site and facilitate ion transport. Simultaneously, MXene effectively enhances the conductivity of the heterostructure, resulting in accelerating electron transport. Due to these attributes, the P-Bi-ene/MXene heterostructure demonstrates high desalination capacity (90.0 mg/g), fast desalination rate, and good cycling performance. The simple self-assembly strategy between 2D/2D materials described herein may offer inspirations for the synthesis of innovative electrode materials with high performance.

8.
Small ; 19(50): e2304504, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635108

RESUMO

Aqueous zinc-ion batteries (AZIBs) are considered to be one of the most promising devices for large-scale energy storage systems owing to their high theoretical capacity, environmental friendliness, and safety. However, the ionic intercalation or surface redox mechanisms in conventional cathode materials generally result in unsatisfactory capacities. Conversion-type aqueous zinc-tellurium (Zn-Te) batteries have recently gained widespread attention owing to their high theoretical specific capacities. However, it remains an enormous challenge to improve the slow kinetics of the aqueous Zn-Te batteries. Here, MoO2 nanoclusters embedded in hierarchical nitrogen-doped carbon nanoflower (MoO2 /NC) hosts are successfully synthesized and loaded with Te in aqueous Zn-Te batteries. Benefitting from the highly dispersed MoO2 nanoclusters and hierarchical nanoflower structure with a large specific surface area, the electrochemical kinetics of the Te redox reaction are significantly improved. As a result, the Te-MoO2 /NC electrode exhibits superior cycling stability and a high specific capacity of 493 mAh g-1 at 0.1 A g-1 . Meanwhile, the conversion mechanism is systematically explored using a variety of ex situ characterization methods. Therefore, this study provides a novel approach for enhancing the kinetics of the Te redox reaction in aqueous Zn-Te batteries.

9.
J Colloid Interface Sci ; 652(Pt A): 285-293, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595445

RESUMO

Aqueous zinc ion batteries (AZIBs) have gained extensive attention due to the numerous advantages of zinc, such as low redox potential, high abundance, low cost as well as high theoretical specific capacity. However, the development of AZIBs is still hampered due to the lack of suitable cathodes. In this work, the freestanding defective ammonium vanadate@MXene (d-NVO@MXene) hybrid film was synthesized by simple vacuum filtration strategy. Due to the presence of the hierarchical freestanding structure, outstanding MXene conductive networks and abundant oxygen vacancy (in the d-NVO nanoribbons), the d-NVO@MXene hybrid film can not only expose more active sites but also possess outstanding conductivity and kinetics of charge transfer/ion diffusion. When the d-NVO@MXene hybrid film was directly used as the cathode, it displayed a high specific capacity of 498 mAh/g at 0.5 A/g and superior cycling stability performance with near 100 % coulomb efficiency. Furthermore, the corresponding storage mechanism was elucidated by ex situ various characterizations. This work provides new ideas for the development of freestanding vanadium-based cathode materials for AZIBs.

10.
ACS Appl Bio Mater ; 6(6): 2487-2495, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37289442

RESUMO

Bacterial infection poses an enormous threat to human life and health. The inability of drugs to be effectively delivered to the site of infection and the development of bacterial resistance make the treatment process more difficult. Herein, a stepwise targeted biomimetic nanoparticle (NPs@M-P) with inflammatory tendency and Gram-negative bacterial targeting was designed, which can achieve efficient antibacterial activity under near-infrared triggering. Leukocyte membranes and targeted molecules (PMB) are used to deliver NPs to the surface of Gram-negative bacteria. The heat and ROS released by NPs@M-P can efficiently kill Gram-negative bacteria under low-power near-infrared light. Thus, this multimodal combination therapy strategy has broad promise in fighting bacterial infection and avoiding drug resistance.


Assuntos
Nanopartículas , Humanos , Nanopartículas/uso terapêutico , Antibacterianos/farmacologia , Bactérias Gram-Negativas
11.
J Colloid Interface Sci ; 648: 357-364, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301160

RESUMO

Capacitive deionization (CDI) is regarded as a promising desalination technology owing to its low cost and environmental friendliness. However, the lack of high-performance electrode materials remains a challenge in CDI. Herein, the hierarchical bismuth-embedded carbon (Bi@C) hybrid with strong interface coupling was prepared through facile solvothermal and annealing strategy. The hierarchical structure with strong interface coupling between the bismuth and carbon matrix afforded abundant active sites for chloridion (Cl-) capture, improved electrons/ions transfer and the stability of the Bi@C hybrid. As a result of these advantages, the Bi@C hybrid showed a high salt adsorption capacity (75.3 mg/g under 1.2 V), salt adsorption rate and good stability, making it a promising electrode material for CDI. Furthermore, the desalination mechanism of the Bi@C hybrid was elucidated through various characterizations. Therefore, this work provides valuable insights for the design of high-performance bismuth-based electrode materials for CDI.

12.
J Colloid Interface Sci ; 645: 542-550, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37163800

RESUMO

Aqueous zinc-ion batteries have attracted more and more attention due to their safety, environmental benignity and high theoretical capacity. However, the lack of appropriate cathode materials with high capacity and long cycle life have become an obstacle to the development of aqueous zinc-ion batteries. Herein, the hierarchical amorphous vanadium oxide and carbon nanotubes (a-V2O5@CNTs) microspheres with strong interface interaction were successfully prepared by combing facile spray drying technique with annealing treatment. Benefiting from the a-V2O5 amorphous characters, CNTs framework high conductivity and hierarchical microspheres with strong interface interaction, the a-V2O5@CNTs exhibited abundant active sites, fast reaction kinetics as well as eminent structure stability. As a promising electrode material, the a-V2O5@CNTs displayed high specific capacity (480 mAh g-1 at 0.5 A g-1), good rate capability and long-term stability under high current density (158 mAh g-1 at 30 A g-1 over 1000 cycles). Meanwhile, the corresponding mechanism was further illustrated through different characterizations. Furthermore, the as-assembled flexible pouch battery based on the a-V2O5@CNTs delivered outstanding flexibility and feasibility. Hence, this work provides a new idea for developing high performance cathode materials of aqueous zinc-ion batteries.

13.
J Colloid Interface Sci ; 642: 430-438, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028156

RESUMO

Vanadium-based oxides have gained widespread attention as promising cathode materials for aqueous zinc-ion batteries (AZIBs) due to their abundant valences, high theoretical capacity and low cost. However, the intrinsic sluggish kinetics and unsatisfactory conductivity have severely hampered their further development. Herein, a facile and effective defect engineering strategy was developed at room temperature to prepare the defective (NH4)2V10O25·8H2O (d-NHVO) nanoribbon with plenty of oxygen vacancies. Owing to the introduction of oxygen vacancies, the d-NHVO nanoribbon possessed more active sites, excellent electronic conductivity and fast ion diffusion kinetics. Benefiting from these advantages, the d-NHVO nanoribbon as an aqueous zinc-ion battery cathode material exhibited superior specific capacity (512 mAh g-1 at 0.3 A g-1), excellent rate capability and long-term cycle performance. Simultaneously, the storage mechanism of the d-NHVO nanoribbon was clarified via comprehensive characterizations. Furthermore, the pouch battery based on the d-NHVO nanoribbon was fabricated and presented eminent flexibility and feasibility. This work provides a novel thought for simple and efficient development of high- performance vanadium-based oxides cathode materials for AZIBs.

14.
ACS Nano ; 17(5): 4843-4853, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36867670

RESUMO

Capacitive deionization has been considered as a promising solution to the challenge of freshwater shortage due to its high efficiency, low environmental footprint, and low energy consumption. However, developing advanced electrode materials to improve capacitive deionization performance remains a challenge. Herein, the hierarchical bismuthene nanosheets (Bi-ene NSs)@MXene heterostructure was successfully prepared by combining the Lewis acidic molten salt etching and the galvanic replacement reaction, which achieves the effective utilization of the molten salt etching byproducts (residual copper). The vertically aligned bismuthene nanosheets array evenly in situ grown on the surface of MXene, which not only facilitate ion and electron transport as well as offer abundant active sites but also provide strong interfacial interaction between bismuthene and MXene. Benefiting from the above advantages, the Bi-ene NSs@MXene heterostructure as a promising capacitive deionization electrode material exhibits high desalination capacity (88.2 mg/g at 1.2 V), fast desalination rate, and good long-term cycling performance. Moreover, the mechanisms involved were elaborated by systematical characterizations and density functional theory calculations. This work provides inspirations for the preparation of MXene-based heterostructures and their application for capacitive deionization.

15.
Opt Express ; 31(4): 7023-7031, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823947

RESUMO

Due to the fascinating features, pulsating solitons attract much attention in the field of nonlinear soliton dynamics and ultrafast lasers. So far, most of the investigations on pulsating soliton are conducted in Er-doped fiber lasers. In this work, we reported the periodic transition between two evolving pulsating soliton states in an Yb-doped fiber laser. By using the real-time measurement techniques, the spectral and temporal characteristics of this transition state were investigated. Two evolving soliton pulsation states have similar evolution process, i.e., from pulsating towards quasi-stable mode-locked states. However, the details of the two processes are different, such as the pulse energy levels, pulsating modulation depths, duration of quasi-stable mode-locked states. The transition between two evolving soliton pulsation states could be attributed to the interaction of the polarizer and the varying polarization states of the pulse inside the laser cavity. The experimental results will contribute to the further understanding of soliton pulsating dynamics in dissipative optical systems.

16.
J Colloid Interface Sci ; 632(Pt A): 216-222, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36413946

RESUMO

MXene has drawn considerable attention in energy storage due to particular physicochemical properties. At present, among most near-ambient temperature preparation methods, water is usually served as the main solvent. However, MXene is usually subjected to fast structural degradation on account of water molecules attacking in aqueous solution. Herein, we report a novel water-free etching strategy for synthesizing few-layered Ti3C2Tx MXenes in deep eutectic solvents at near-ambient temperature. Benefitting from the absence of water and macromolecular structure of deep eutectic solvents, the as-synthesized few-layered Ti3C2Tx (DES-Ti3C2Tx) MXene presents abundant -O terminations and low oxidation degree. As a consequence, the DES-Ti3C2Tx MXene displays excellent specific capacitance of 320 F/g at 2 mV/s. Impressively, the DES-Ti3C2Tx MXene exhibits splendid long-term stability that 97% specific capacitance retention can be acquired over 50 000 cycles at high current density of 50 A/g. Therefore, this study offers a new thought for preparing high performance MXene-based materials by water-free etching method.

17.
J Colloid Interface Sci ; 628(Pt A): 553-561, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933871

RESUMO

Aqueous zinc ion batteries have attracted extensive concern as a promising candidate for large-scale energy storage because of their high theoretical specific capacity, low cost and inherent safety. However, the lacking of applicable cathode materials with outstanding electrochemical performance have severely hindered the further development of aqueous zinc ion batteries. Herein, we report a hierarchical accordion-like manganese oxide@carbon (MnO@C) hybrid with strong interaction heterointerface and comprehensively inquire into its electrochemical performance as cathode materials for aqueous zinc ion batteries. The unique hierarchical accordion-like layered structure coupling with strong interaction heterointerface between small MnO and carbon matrix efficaciously improve the ion/electron transfer process and enhance structure stability of the MnO@C hybrid. Benefitting from these unique advantages, the MnO@C hybrid bestows excellent specific capacity of 456 mAh g-1 at 50 mA g-1. Impressively, the MnO@C hybrid presents distinguished long-term cycling stability with fairly low decay rates of only 0.0079 % per cycle even over 2000 cycles at 2000 mA g-1. Moreover, comprehensive characterizations are executed to elucidate the mechanism involved. Therefore, this work affords a new idea for developing outstanding performance manganese-based cathode materials for aqueous zinc ion batteries.

18.
J Colloid Interface Sci ; 628(Pt B): 204-213, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988515

RESUMO

Aqueous zinc-ions batteries with low cost, reliable safety, high theoretical specific capacity and eco-friendliness have captured conspicuous attention in large-scale energy storage. However, the developed cathodes often suffer from low electrical conductivity and sluggish Zn2+ diffusion kinetics, which severely hampers the development of aqueous zinc-ions batteries. Herein, we successfully prepare Mg/PANI/V2O5•nH2O (MPVO) nanosheets through conducting polymers (polyaniline) and metal ions (Mg2+) co-intercalated strategy and systematically explore its electrochemical performance as cathode materials for aqueous zinc-ion batteries. Benefitting from the synergistic effect of polyaniline and Mg2+ co-intercalated, the MPVO exhibits larger interlayer spacing and higher electrical conductivity than the single guest intercalation, which significantly enhances the electrochemical kinetics. As a consequence, the MPVO cathodes deliver superior specific capacity, rate capability and long-term cycling performance. Moreover, multiple characterizations and theoretical calculations are executed to expound the relevant mechanism.Therefore, this work provides a novel thought for the design of high-performance cathode materials for aqueous ZIBs.

19.
J Colloid Interface Sci ; 624: 233-241, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660891

RESUMO

Capacitive deionization has attracted wide concern on accountof its high energy efficiency, low manufacturing cost and environmental friendliness. Nevertheless, the development of capacitive deionization is still impeded because of the scarcity of suitable electrode materials with superior performance. Herein, we successfully prepared the two-dimensional (2D) titanium carbide (Ti3C2Tx) MXene/ reduced graphene oxide (rGO) superlattice heterostructure by a facile electrostatic self-assembly strategy and systematically investigated its performance as capacitive deionized electrode materials. The unique 2D/2D superlattice heterostructure not only effectively alleviates the self-stacking problem of Ti3C2Tx MXene nanosheets, but also endows the heterostructure with superior conductivity and fast ion diffusion rate. As a result, the MXene/rGO superlattice heterostructure exhibits an outstanding salt (Na+) adsorption capacity (48 mg g-1) at 1.2 V significantly superior to pristine Ti3C2Tx MXene nanosheets, along with outstanding long-term cycling performance. Furthermore, the mechanism involved was elucidated through comprehensive characterizations. Therefore, this study offers a new pathway for designing high-performance electrode materials for capacitive deionization.

20.
ACS Appl Bio Mater ; 5(6): 2536-2542, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35535955

RESUMO

Mild-temperature photothermal therapy (PTT) is being extensively explored because it causes less injury to normal cells. However, the effect of mild-temperature PTT is decreased because of heat shock protein (HSP) overexpression. To solve this problem, we designed functional conjugated polymer nanoparticles (CPNs-G) that enhance the mild-temperature photothermal effect. Upon near-infrared (NIR) light irradiation, CPNs-G generate local heat to realize the photothermal effect. Meanwhile, the increased temperature enhances the catalytic activity of GOx, thus impeding the generation of adenosine triphosphate (ATP) and inhibiting HSP expression. Therefore, this work provides a strategy for overcoming thermoresistance through an enzyme-mediated starvation effect regulated by NIR light.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanopartículas/uso terapêutico , Fototerapia , Polímeros , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...