Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(6): e14806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887182

RESUMO

AIM: Glucose-dependent insulinotropic polypeptide (GIP) is a ligand of glucose-dependent insulinotropic polypeptide receptor (GIPR) that plays an important role in the digestive system. In recent years, GIP has been regarded as a hormone-like peptide to regulate the local metabolic environment. In this study, we investigated the antioxidant role of GIP on the neuron and explored the possible mechanism. METHODS: Cell counting Kit-8 (CCK-8) was used to measure cell survival. TdT-mediated dUTP Nick-End Labeling (TUNEL) was used to detect apoptosis in vitro and in vivo. Reactive oxygen species (ROS) levels were probed with 2', 7'-Dichloro dihydrofluorescein diacetate (DCFH-DA), and glucose intake was detected with 2-NBDG. Immunofluorescence staining and western blot were used to evaluate the protein level in cells and tissues. Hematoxylin-eosin (HE) staining, immunofluorescence staining and tract-tracing were used to observe the morphology of the injured spinal cord. Basso-Beattie-Bresnahan (BBB) assay was used to evaluate functional recovery after spinal cord injury. RESULTS: GIP reduced the ROS level and protected cells from apoptosis in cultured neurons and injured spinal cord. GIP facilitated wound healing and functional recovery of the injured spinal cord. GIP significantly improved the glucose uptake of cultured neurons. Meanwhile, inhibition of glucose uptake significantly attenuated the antioxidant effect of GIP. GIP increased glucose transporter 3 (GLUT3) expression via up-regulating the level of hypoxia-inducible factor 1α (HIF-1α) in an Akt-dependent manner. CONCLUSION: GIP increases GLUT3 expression and promotes glucose intake in neurons, which exerts an antioxidant effect and protects neuronal cells from oxidative stress both in vitro and in vivo.


Assuntos
Polipeptídeo Inibidor Gástrico , Transportador de Glucose Tipo 3 , Glucose , Neurônios , Estresse Oxidativo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Traumatismos da Medula Espinal , Animais , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Masculino , Células Cultivadas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
2.
J Neurochem ; 165(6): 842-859, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971732

RESUMO

Schwann cells play an essential role in peripheral nerve regeneration by generating a favorable microenvironment. Gastric inhibitory peptide/gastric inhibitory peptide receptor (GIP/GIPR) axis deficiency leads to failure of sciatic nerve repair. However, the underlying mechanism remains elusive. In this study, we surprisingly found that GIP treatment significantly enhances the migration of Schwann cells and the formation of Schwann cell cords during recovery from sciatic nerve injury in rats. We further revealed that GIP and GIPR levels in Schwann cells were low under normal conditions, and significantly increased after injury demonstrated by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Wound healing and Transwell assays showed that GIP stimulation and GIPR silencing could affect Schwann cell migration. In vitro and in vivo mechanistic studies based on interference experiment revealed that GIP/GIPR might promote mechanistic target of rapamycin complex 2 (mTORC2) activity, thus facilitating cell migration; Rap1 activation might be involved in this process. Finally, we retrieved the stimulatory factors responsible for GIPR induction after injury. The results indicate that sonic hedgehog (SHH) is a potential candidate whose expression increased upon injury. Luciferase and chromatin immunoprecipitation (ChIP) assays showed that Gli3, the target transcription factor of the SHH pathway, dramatically augmented GIPR expression. Additionally, in vivo inhibition of SHH could effectively reduce GIPR expression after sciatic nerve injury. Collectively, our study reveals the importance of GIP/GIPR signaling in Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.


Assuntos
Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Proteínas Hedgehog/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Transdução de Sinais/fisiologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/lesões , Receptores de Peptídeos/metabolismo , Células de Schwann/metabolismo
3.
J Biol Chem ; 299(3): 103020, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36791914

RESUMO

Neural stem cells (NSCs) proliferation and differentiation rely on proper expression and posttranslational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes. We confirmed that this phenotype is mediated by the elevated level of PAX6 protein. We further verified that KAT2A negatively regulates PAX6 at the protein level in cultured neural stem cells of rat cerebral cortex. We revealed that PAX6 is a novel acetylation substrate of KAT2A and the acetylation of PAX6 promotes its ubiquitination mediated by the E3 ligase RNF8 that facilitated PAX6 degradation. Our study proposes that KAT2A inhibition results in accelerated proliferation, delayed differentiation, or apoptosis, depending on the context of PAX6 dosage. Thus, the KAT2A/PAX6 axis plays an essential role to keep a balance between the self-renewal and differentiation of NSCs.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Ratos , Diferenciação Celular/fisiologia , Proliferação de Células , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
4.
Front Cell Dev Biol ; 9: 768970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820384

RESUMO

Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...