Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 163: 1-11, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30998968

RESUMO

Osteosarcoma is an aggressive bone tumor characterized by a high level of genetic instability and recurring DNA deletions and amplifications. This study aims to investigate how microRNA-496 (miR-496) affects proliferation, invasion, and migration of human osteosarcoma (OS) cells and in vivo tumorigenicity by targeting eukaryotic translation initiation factor 4E (eIF4E). Microarray-based gene expression profiling involving OS was used in order to identify differentially expressed genes. After that, the interaction between miR-496 expression and OS patients' survival rate was determined. The expression pattern of miR-496 and eIF4E was determined in OS tissues and cells, and their potential relationship was further analyzed by using the dual luciferase reporter gene assay. With the purpose of identifying the functional role miR-496 in OS, cell proliferation, migration, and invasion were measured in cells treated with miR-496 mimic or inhibitor. A nude mouse model was constructed in order to investigate the regulatory effects of miR-496 on tumor growth in vivo by regulating eIF4E. OS cells exhibited a down-regulated expression of miR-496 and an up-regulated expression of eIF4E. miR-496 expression was positively correlated to OS patients' survival rate. Bioinformatics analysis suggested eIF4E would be a direct target of miR-496, and the expression of eIF4E was inhibited by overexpression of miR-496. miR-496 elevation was found to exert suppressive effects on OS cell proliferation, migration and invasion in vitro and tumor growth in vivo, with the effects being reversed using miR-496 depletion. Altogether, the above findings support a conclusion that miR-496 could work as a tumor suppressor in OS through down-regulation of eIF4E. This study may provide a novel target for treatment of OS.


Assuntos
Neoplasias Ósseas/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Osteossarcoma/genética , Osteossarcoma/fisiopatologia , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...