Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 1010-1013, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35311478

RESUMO

Equine coronavirus (ECoV) was first identified in the USA and has been previously described in several countries. In order to test the presence of ECoV in China, we collected 51 small intestinal samples from donkey foals with diarrhoea from a donkey farm in Shandong Province, China between August 2020 and April 2021. Two samples tested positive for ECoV and full-length genome sequences were successfully obtained using next-generation sequencing, one of which was further confirmed by Sanger sequencing. The two strains shared 100% sequence identity at the scale of whole genome. Bioinformatics analyses further showed that the two Chinese strains represent a novel genetic variant of ECoV and shared the highest sequence identity of 97.05% with the first identified ECoV strain - NC99. In addition, it may be a recombinant, with the recombination region around the NS2 gene. To our knowledge, this is the first documented report of ECoV in China, highlighting its risk to horse/donkey breeding. In addition, its potential risk to public health also warrants further investigation.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Cavalos , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Equidae , Doenças dos Cavalos/epidemiologia , Cavalos , Filogenia
2.
Bioorg Chem ; 99: 103838, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32334194

RESUMO

A series of novel pyrazoline derivatives containing methyl-1H-indole moiety were discovered as potential inhibitors for blocking APC-Asef interactions. The top hit Q19 suggested potency of inhibiting APC-Asef interactions and attractive preference for human-sourced colorectal cells. It was already comparable with the previous representative and the positive control Regorafenib before further pharmacokinetic optimization. The introduction of methyl-1H-indole moiety realized the Mitochondrial affection thus might connect the impact on the protein-interaction level with the apoptosis events. The molecular docking simulation inferred that bringing trifluoromethyl groups seemed a promising approach for causing more key interactions such as H-bonds. This work raised referable information for further discovery of inhibitors for blocking APC-Asef interactions.


Assuntos
Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Antineoplásicos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Pirazóis/farmacologia , Proteína da Polipose Adenomatosa do Colo/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/química , Relação Estrutura-Atividade
3.
Toxins (Basel) ; 11(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671876

RESUMO

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease of wheat. Salicylic acid (SA) is involved in the resistance of wheat to F. graminearum. Cell wall mannoprotein (CWM) is known to trigger defense responses in plants, but its role in the pathogenicity of F. graminearum remains unclear. Here, we characterized FgCWM1 (FG05_11315), encoding a CWM in F. graminearum. FgCWM1 was highly expressed in wheat spikes by 24 h after initial inoculation and was upregulated by SA. Disruption of FgCWM1 (ΔFgCWM1) reduced mannose and protein accumulation in the fungal cell wall, especially under SA treatment, and resulted in defective fungal cell walls, leading to increased fungal sensitivity to SA. The positive role of FgCWM1 in mannose and protein accumulation was confirmed by its expression in Saccharomyces cerevisiae. Compared with wild type (WT), ΔFgCWM1 exhibited reduced pathogenicity toward wheat, but it produced the same amount of deoxynivalenol both in culture and in spikes. Complementation of ΔFgCWM1 with FgCWM1 restored the WT phenotype. Localization analyses revealed that FgCWM1 was distributed on the cell wall, consistent with its structural role. Thus, FgCWM1 encodes a CWM protein that plays an important role in the cell wall integrity and pathogenicity of F. graminearum.


Assuntos
Parede Celular/química , Parede Celular/genética , Resistência à Doença/genética , Fusarium/genética , Interações Hospedeiro-Patógeno/genética , Glicoproteínas de Membrana/genética , Virulência/genética , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ácido Salicílico/química , Triticum/microbiologia
4.
New Phytol ; 224(2): 961-973, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31168798

RESUMO

De-domestication is a unique evolutionary process during which crops re-acquire wild-like traits to survive and persist in agricultural fields without the need for human cultivation. The re-acquisition of seed dispersal mechanisms is crucial for crop de-domestication. Common wheat is an important cereal crop worldwide. Tibetan semi-wild wheat is a potential de-domesticated common wheat subspecies. However, the crucial genes responsible for its brittle rachis trait have not been identified. Genetic mapping, functional analyses and phylogenetic analyses were completed to identify the gene associated with Qbr.sau-5A, which is a major locus for the brittle rachis trait of Tibetan semi-wild wheat. The cloned Qbr.sau-5A gene is a new Q allele (Qt ) with a 161-bp transposon insertion in exon 5. Although Qt is expressed normally, its encoded peptide lacks some key features of the APETALA2 family. The abnormal functions of Qt in developing wheat spikes result in brittle rachises. Phylogenetic and genotyping analyses confirmed that Qt originated from Q in common wheat and is naturally distributed only in Tibetan semi-wild wheat populations. The identification of Qt provides new evidence regarding the origin of Tibetan semi-wild wheat, and new insights into the re-acquisition of wild traits during crop de-domestication.


Assuntos
Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Mutagênese Insercional/genética , Triticum/genética , Triticum/fisiologia , Evolução Biológica , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
5.
Eur J Med Chem ; 177: 425-447, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158755

RESUMO

Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC50 of 0.10 ±â€¯0.01 µM than Regorafenib (IC50 = 0.16 ±â€¯0.04 µM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Antineoplásicos/uso terapêutico , Morfolinas/uso terapêutico , Pirazóis/uso terapêutico , Proteína da Polipose Adenomatosa do Colo/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Morfolinas/síntese química , Morfolinas/farmacologia , Transplante de Neoplasias , Ligação Proteica , Pirazóis/síntese química , Pirazóis/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Molecules ; 24(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052167

RESUMO

Cyclooxygenase-2 (COX-2) as a rate-limiting metabolism enzyme of arachidonic acid has been found to be implicated in tumor occurrence, angiogenesis, metastasis as well as apoptosis inhibition, regarded as an attractive therapeutic target for cancer therapy. In our research, a series of dihydropyrazole derivatives containing benzo oxygen heterocycle and sulfonamide moieties were designed as highly potent and selective COX-2 inhibitors by computer-aided drug analysis of known COX-2 inhibitors. A total of 26 compounds were synthesized and evaluated COX-2 inhibition and pharmacological efficiency both in vitro and in vivo with multi-angle of view. Among them, compound 4b exhibited most excellent anti-proliferation activities against SW620 cells with IC50 of 0.86 ± 0.02 µM than Celecoxib (IC50 = 1.29 ± 0.04 µM). The results favored our rational design intention and provides compound 4b as an effective COX-2 inhibitor available for the development of colon tumor therapeutics.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Oxigênio/química , Pirazóis/química , Pirazóis/farmacologia , Sulfonamidas/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Inibidores de Ciclo-Oxigenase 2/síntese química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Pirazóis/síntese química , Relação Quantitativa Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Genomics ; 20(1): 390, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109305

RESUMO

BACKGROUND: Phytohormones are key regulators of plant growth, development, and signalling networks involved in responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon. However, because of species differences and the complexity of the wheat genome, these transcriptome data are not appropriate reference material for wheat studies. RESULTS: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones, including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid (SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones, implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were significantly and differentially induced by a specific phytohormone (i.e., hormone-specific responses). The data for these hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic (Fusarium head blight) and abiotic (water deficit) stresses. CONCLUSION: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.


Assuntos
Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Triticum/genética , Desidratação/genética , Desidratação/metabolismo , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Fusarium , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/microbiologia
8.
Toxins (Basel) ; 11(2)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678154

RESUMO

Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat⁻F. graminearum interaction. In this study, we identified a salicylate hydroxylase gene (FG05_08116; FgNahG) in F. graminearum. This gene encodes a protein that catalyzes the conversion of SA to catechol. Additionally, FgNahG was widely distributed within hyphae. Disrupting the FgNahG gene (ΔFgNahG) led to enhanced sensitivity to SA, increased accumulation of SA in wheat spikes during the early infection stage and inhibited development of head blight symptoms. However, FgNahG did not affect mycotoxin production. Re-introducing a functional FgNahG gene into the ΔFgNahG mutant recovered the wild-type phenotype. Moreover, the expression of FgNahG in transgenic Arabidopsis thaliana decreased the SA concentration and the resistance of leaves to F. graminearum. These results indicate that the endogenous SA in wheat influences the resistance against F. graminearum. Furthermore, the capacity to metabolize SA is an important factor affecting the ability of F. graminearum to infect wheat plants.


Assuntos
Resistência à Doença , Proteínas Fúngicas , Fusarium , Oxigenases de Função Mista , Doenças das Plantas , Ácido Salicílico , Triticum/microbiologia , Arabidopsis/genética , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Fusarium/patogenicidade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Micélio/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo
9.
Sci Rep ; 8(1): 11928, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093727

RESUMO

Basis for the effects of nitrogen (N) on wheat grain storage proteins (GSPs) and on the establishment of processing quality are far from clear. The response of GSPs and processing quality parameters to four N levels of four common wheat cultivars were investigated at two sites over two growing seasons. Except gluten index (GI), processing quality parameters as well as GSPs quantities were remarkably improved by increasing N level. N level explained 4.2~59.2% and 10.4~80.0% variability in GSPs fractions and processing quality parameters, respectively. The amount of N remobilized from vegetative organs except spike was significantly increased when enhancing N application. GSPs fractions and processing quality parameters except GI were only highly and positively correlated with the amount of N remobilized from stem with sheath. N reassimilation in grain was remarkably strengthened by the elevated activity and expression level of glutamine synthetase. Transcriptome analysis showed the molecular mechanism of seeds in response to N levels during 10~35 days post anthesis. Collectively, we provided comprehensive understanding of N-responding mechanisms with respect to wheat processing quality from N source to GSPs biosynthesis at the agronomic, physiological and molecular levels, and screened candidate genes for quality breeding.


Assuntos
Indústria de Processamento de Alimentos/métodos , Nitrogênio/metabolismo , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Triticum/fisiologia , China , Grão Comestível , Estudos de Associação Genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Transcriptoma
10.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103374

RESUMO

ATP-binding cassette (ABC) transporters hydrolyze ATP to transport a wide range of substrates. Fusarium graminearum is a major causal agent of Fusarium head blight, which is a severe disease in wheat worldwide. FgABCC9 (FG05_07325) encodes an ABC-C (ABC transporter family C) transporter in F. graminearum, which was highly expressed during the infection in wheat and was up-regulated by the plant defense hormone salicylic acid (SA) and the fungicide tebuconazole. The predicted tertiary structure of the FgABCC9 protein was consistent with the schematic of the ABC exporter. Deletion of FgABCC9 resulted in decreased mycelial growth, increased sensitivity to SA and tebuconazole, reduced accumulation of deoxynivalenol (DON), and less pathogenicity towards wheat. Re-introduction of a functional FgABCC9 gene into ΔFgABCC9 recovered the phenotypes of the wild type strain. Transgenic expression of FgABCC9 in Arabidopsis thaliana increased the accumulation of SA in its leaves without activating SA signaling, which suggests that FgABCC9 functions as an SA exporter. Taken together, FgABCC9 encodes an ABC exporter, which is critical for fungal exportation of SA, response to tebuconazole, mycelial growth, and pathogenicity towards wheat.


Assuntos
Farmacorresistência Fúngica/fisiologia , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Receptores de Sulfonilureias/metabolismo , Triticum/microbiologia , Antifúngicos/farmacologia , Arabidopsis/microbiologia , Proteínas Fúngicas/genética , Fusarium/genética , Micélio/genética , Receptores de Sulfonilureias/genética
11.
Genome ; 61(3): 201-208, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29401409

RESUMO

We evaluated the SGP-1 protein composition of 368 Chinese wheat landraces using SDS-PAGE. The SGP-D1 null type was identified in three accessions (Xiaoqingmang, Pushanbamai, and P119). An 18-bp deletion and 9-bp variation were found at the junction region of the 7th intron and 8th exon, leading to deletion of the intron-exon junction recognition site AG when aligned the 8261-bp DNA sequence of TaSSIIa-D in Pushanbamai with that of Chinese Spring. Four cDNA types with mis-spliced isoforms were subsequently detected through amplification of TaSSIIa-D cDNAs. Among these, nine type II cDNAs with a 16-bp deletion in the 8th exon were detected, indicating that the major transcriptional pattern of TaSSIIa in Pushanbamai is type II. In the type IV cDNA, a 97-bp sequence remains undeleted in the end of the 5th exon. The amylose content in Pushanbamai was significantly higher than that in all control lines under field conditions, which suggested that deletion of SGP-D1 has an efficient impact on amylose content. As the TaSSIIa gene plays an important role in regulating the content of amylose, it is anticipated that these natural variants of TaSSIIa-D will provide useful resources for quality improvement in wheat.


Assuntos
Processamento Alternativo , Proteínas de Plantas/genética , Sintase do Amido/genética , Triticum/genética , Amilose/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/deficiência , Sintase do Amido/metabolismo , Triticum/enzimologia
12.
G3 (Bethesda) ; 8(3): 771-778, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358231

RESUMO

Spike density and processing quality are important traits in modern wheat production and are controlled by multiple gene loci. The associated genes have been intensively studied and new discoveries have been constantly reported during the past few decades. However, no gene playing a significant role in the development of these two traits has been identified. In the current study, a common wheat mutant with extremely compact spikes and good processing quality was isolated and characterized. A new allele (Qc1 ) of the Q gene (an important domestication gene) responsible for the mutant phenotype was cloned, and the molecular mechanism for the mutant phenotype was studied. Results revealed that Qc1 originated from a point mutation that interferes with the miRNA172-directed cleavage of Q transcripts, leading to its overexpression. It also reduces the longitudinal cell size of rachises, resulting in an increased spike density. Furthermore, Qc1 increases the number of vascular bundles, which suggests a higher efficiency in the transportation of assimilates in the spikes of the mutant than that of wild type. This accounts for the improved processing quality. The effects of Qc1 on spike density and wheat processing quality were confirmed by analyzing nine common wheat mutants possessing four different Qc alleles. These results deepen our understanding of the key roles of Q gene, and provide new insights for the potential application of Qc alleles in wheat quality breeding.


Assuntos
Alelos , Expressão Gênica , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Triticum/genética , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , MicroRNAs/genética , Mutação , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Interferência de RNA
14.
Sci Rep ; 7: 46129, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387243

RESUMO

Fusarium graminearum is the major causal agent of fusarium head blight in wheat, a serious disease worldwide. Linoleic acid isomerase (LAI) catalyses the transformation of linoleic acid (LA) to conjugated linoleic acid (CLA), which is beneficial for human health. We characterised a cis-12 LAI gene of F. graminearum (FGSG_02668; FgLAI12), which was downregulated by salicylic acid (SA), a plant defence hormone. Disruption of FgLAI12 in F. graminearum resulted in decreased accumulation of cis-9,trans-11 CLA, enhanced sensitivity to SA, and increased accumulation of LA and SA in wheat spikes during infection. In addition, mycelial growth, accumulation of deoxynivalenol, and pathogenicity in wheat spikes were reduced. Re-introduction of a functional FgLAI12 gene into ΔFgLAI12 recovered the wild-type phenotype. Fluorescent microscopic analysis showed that FgLAI12 protein was usually expressed in the septa zone of conidia and the vacuole of hyphae, but was expressed in the cell membrane of hyphae in response to exogenous LA, which may be an element of LA metabolism during infection by F. graminearum. The cis-12 LAI enzyme encoded by FgLAI12 is critical for fungal response to SA, mycelial growth and virulence in wheat. The gene FgLAI12 is potentially valuable for biotechnological synthesis of cis-9,trans-11 CLA.


Assuntos
Fusarium/genética , Fusarium/patogenicidade , Genes Fúngicos , Isomerases/genética , Ácido Linoleico/metabolismo , Micélio/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Biocatálise/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Deleção de Genes , Teste de Complementação Genética , Isomerases/metabolismo , Isomerismo , Ácido Linoleico/química , Micélio/efeitos dos fármacos , Doenças das Plantas/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Frações Subcelulares/metabolismo , Triticum/microbiologia , Virulência/efeitos dos fármacos , Virulência/genética
15.
Theor Appl Genet ; 130(6): 1321-1330, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28314934

RESUMO

KEY MESSAGE: A novel Wx-B1 allele was characterized; a transposon insertion resulted in the loss of its function, which is different from the previously reported gene silencing mechanisms at the Wx-B1 locus. The waxy protein composition of 53 Chinese wheat landraces was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis; of these, 10 did not show the expression of Wx-A1 (four accession) or Wx-B1 (six accessions) protein. The results of molecular marker detection revealed that the Wx-B1 allele (Wx-B1n) showed normal expression, inconsistent with the findings of SDS-PAGE for the Xiaobaipi accession. Further cloning of the 9160-bp region covering the Wx-B1 coding region and 3'-downstream region revealed that a 2178-bp transposon fragment had been inserted at 2462 bp within the tenth exon of Wx-B1n ORF, leading to the absence of Wx-B1 protein. Sequence analysis indicated that the insertion possessed the structural features of invert repeat and target repeat elements, we deduced that it was a transposon. Further PCR analysis revealed that this fragment had moved, but not copied itself, from 3B chromosome to the current location in Wx-B1n. Therefore, the reason for the inactivation of Wx-B1n was considerably different from those for the inactivation of Wx-B1b, Wx-B1k, and Wx-B1m; to our knowledge, this kind of structural mutation has never been reported in Wx-B1 alleles. This novel allele is interesting, because it was not associated with the deletion of other quality-related genes included in the 67 kb region lost with the common null allele Wx-B1b. The null Wx-B1n might be useful for investigating gene inactivation and expression as well as for enriching the genetic resource pool for the modification of the amylose/amylopectin ratio, thereby improving wheat quality.


Assuntos
Elementos de DNA Transponíveis , Inativação Gênica , Sintase do Amido/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Passeio de Cromossomo , Clonagem Molecular , Genes de Plantas , Mutagênese Insercional , Fases de Leitura Aberta , Proteínas de Plantas/genética , Triticum/enzimologia
16.
J Genet ; 95(3): 565-72, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27659326

RESUMO

The H⁺-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺-PPase gene ScHP1 in rye (Secale cereale L. 'Qinling'). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺-PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H⁺-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.


Assuntos
Regulação da Expressão Gênica de Plantas , Pirofosfatase Inorgânica/genética , Proteínas de Plantas/genética , Prótons , Secale/genética , Estresse Fisiológico/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Temperatura Baixa , DNA Complementar/genética , DNA Complementar/metabolismo , Secas , Éxons , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Pirofosfatase Inorgânica/metabolismo , Íntrons , Modelos Moleculares , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fases de Leitura Aberta , Fósforo/deficiência , Fósforo/farmacologia , Filogenia , Células Vegetais/efeitos dos fármacos , Células Vegetais/enzimologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/enzimologia , Caules de Planta/genética , Potássio/farmacologia , Secale/classificação , Secale/efeitos dos fármacos , Secale/enzimologia , Cloreto de Sódio/farmacologia
17.
Springerplus ; 5(1): 1552, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652125

RESUMO

Mature embryo is an excellent explant for tissue culture as it is convenient to be obtained without limitation of growing seasons and development stages. However, regeneration ability of the calli from wheat mature embryos is limited, thus hindering its application. To identify genes associated with the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were detected using a recombinant inbred lines (RILs) population derived from the cross between a synthetic hexaploid wheat genotype, SHW-L1 and a commercial cultivar Chuanmai 32. Three QTLs for callus rate were identified and they were located on chromosomes 1D, 5A, and 6D, respectively, with explained phenotypic variation ranging from 10.16 to 11.82 %. One QTL for differentiation rate was detected only with 10.96 % of the phenotypic variation explained. Two QTLs for emergence rate were identified and they were located on 3B and 4A, respectively, with 9.88 and 10.30 % of phenotypic variation. The results presented in this study with those reported previously indicated that group 1, 3, and 5 chromosomes are likely to play important roles in TCR of wheat.

18.
Plasmid ; 87-88: 58-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27615011

RESUMO

In this study, we designed and constructed a super twin T-DNA vector (pTRIDT313-g) containing two independent T-DNA cassettes-one for the selection gene Hyg and the other for the target gene Gus-to produce marker-free transgenic lines. The resulting vector was transformed into tobacco, and polymerase chain reaction (PCR) analysis showed four types of gene combinations in the T1 and T2 generations: Gus only, Hyg only, Gus+Hyg, and untransformed lines. The intermediate region from the T-DNA of the right border of Hyg to the left border of Gus in the Hyg and Gus lines was not amplified. Genome walking confirmed that the Hyg and Gus T-DNA cassettes were independently inserted in different regions of the tobacco genome. Thus, the two T-DNA cassettes were integrated randomly as independent loci into the tobacco genome. The results of reverse transcription-PCR indicated that Hyg could normally be expressed in the roots, stems, and leaves of transgenic lines, and the resistance test showed that all Hyg transgenic lines could grow in the presence of 50mg/L hygromycin. All Gus transgenic lines showed obvious blue coloration in enzyme activity tests, indicating that the Gus gene could be normally expressed in all the lines. Therefore, the super twin T-DNA vector (pTRIDT313-g) exhibits independent integration, heredity, and normal gene function from two T-DNA cassettes. This vector could be a useful and valuable tool in the production of marker-free transgenic lines.


Assuntos
Agrobacterium/fisiologia , DNA Bacteriano , Expressão Gênica , Vetores Genéticos/genética , Transformação Genética , Passeio de Cromossomo , Ordem dos Genes , Ligação Genética , Loci Gênicos , Mutagênese Insercional , Fenótipo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/microbiologia
19.
Fungal Biol ; 120(9): 1135-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27567719

RESUMO

Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds.


Assuntos
Vias Biossintéticas/genética , Fusarium/genética , Fusarium/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Indóis/metabolismo , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Tricotecenos/metabolismo , Triticum/microbiologia , Triptaminas/metabolismo , Triptofano/metabolismo
20.
Genome ; 59(7): 501-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27299732

RESUMO

ADP-glucose pyrophosphorylase (AGP), which consists of two large subunits (AGP-L) and two small subunits (AGP-S), controls the rate-limiting step in the starch biosynthetic pathway. In this study, a full-length open reading frame (ORF) of AGP-L gene (named as Agp2) in wheat and a series of Agp2 gene sequences in wheat relatives were isolated. The coding region of Agp2 contained 15 exons and 14 introns including a full-length ORF of 1566 nucleotides, and the deduced protein contained 522 amino acids (57.8 kDa). Generally, the phylogenetic tree of Agp2 indicated that sequences from A- and D-genome donor species were most similar to each other and sequences from B-genome donor species contained more variation. Starch accumulation and Agp2 expression in wheat grains reached their peak at 21 and 15 days post anthesis (DPA), respectively.


Assuntos
Glucose-1-Fosfato Adenililtransferase/genética , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/química , DNA Complementar/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/biossíntese , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Amido/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...