Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transpl Immunol ; 74: 101626, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35569717

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) are at increased risk of developing renal cell carcinoma (RCC). Accumulating evidence has demonstrated that circular RNAs (circRNAs) are essential players in tumor advancement. However, the functions of circ_0000274 in renal cell carcinoma (RCC) are barely explored. METHODS: The primary RCC cell lines 786-O and A498 were used in this study. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was employed for the RNA levels of circ_0000274, microRNA-338-3p (miR-338-3p) and nucleobindin 2 (NUCB2). RNase R assay was conducted to analyze the feature of circ_0000274.Cell Counting Kit-8 (CCK-8) assay, colony formation assay, transwell assay, tube formation assay and flow cytometry analysis were conducted for cell viability, colony formation, metastasis, angiogenesis and apoptosis, respectively. Western blot assay was utilized for protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were adopted to analyze the associations of circ_0000274 RNA, miR-338-3p RNA and NUCB2 protein. Murine xenograft model was established to explore the function of circ_0000274 RNA in vivo. Immunohistochemistry (IHC) assay was used to analyze NUCB2 protein level in xenograft tumors. RESULTS: Compared to normal tissues and cells, circ_0000274 RNA level was elevated in RCC tissues and cells. Knockdown of circ_0000274 RNA suppressed cell viability, colony formation, metastasis and tube formation and promoted apoptosis in RCC cells in vitro. Circ_0000274 RNA sponged miR-338-3p RNA to positively regulate NUCB2 protein in RCC cells. Inhibition of miR-338-3p reversed the impacts of circ_0000274 knockdown on RCC cell malignant behaviors. MiR-338-3p RNA overexpression repressed the malignant phenotypes of RCC cells, while NUCB2 protein elevation could abrogate the effect. Moreover, circ_0000274 RNA knockdown blocked tumorigenesis in vivo. Besides, circ_0000274 RNA knockdown inactivated the JAK1/STAT3 protein signaling pathway. CONCLUSION: Circ_0000274 RNA functioned as an oncogene in RCC development by regulating miR-338-3p RNA/NUCB2 protein axis and activating the JAK1/STAT3 protein signaling pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Circular , Animais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , MicroRNAs/genética , Nucleobindinas/genética , Nucleobindinas/metabolismo , RNA Circular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Bioengineered ; 13(4): 7972-7983, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35358005

RESUMO

It has been reported that transmembrane protein 100 (TMEM100) acts as a tumor regulator in several types of cancers. However, whether the expression of TMEM100 is associated with the development and prognosis of prostate cancer (PCa) remains elusive. Therefore, the present study aimed to uncover the role of GATA binding protein 5 (GATA5)-mediated activation of TMEM100 in the proliferation, migration and epithelial-to-mesenchymal transition (EMT) of PCa cells. The expressions of TMEM100 and GATA5 in PCa patients were analyzed by the GEPIA database. The binding site of GATA5 and TMEM100 promoter was predicted by the JASPAR database. Expressions of TMEM100 and GATA5 in PCa cells were detected by qRT-PCR and Western blot analysis. Cell Counting Kit 8 and colony formation assays were performed to measure cell proliferation. In addition, cell migration, invasion and the expression of EMT-associated proteins were evaluated using wound healing, transwell assay and Western blotting assays, respectively. The bioinformatics analysis revealed that TMEM100 was downregulated in PCa and was associated with overall survival of PCa. In addition, TMEM10 overexpression attenuated cell proliferation, migration, invasion and EMT in PCa cells. The interaction between TMEM100 and GATA5 was verified using dual luciferase reporter and chromatin immunoprecipitation assays. Furthermore, the results showed that GATA5 was downregulated and GATA5 silencing reversed the inhibitory effects of TMEM10 on PCa cells. Overall, the current study suggested that the GATA5-mediated transcriptional activation of TMEM100 could affect the behavior of PCa cells and was associated with poor prognosis in PCa.


Assuntos
Fator de Transcrição GATA5 , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fator de Transcrição GATA5/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...