Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(4): 351-364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864189

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced cytokine storm is closely associated with coronavirus disease 2019 (COVID-19) severity and lethality. However, drugs that are effective against inflammation to treat lethal COVID-19 are still urgently needed. Here, we constructed a SARS-CoV-2 spike protein-specific CAR, and human T cells infected with this CAR (SARS-CoV-2-S CAR-T) and stimulated with spike protein mimicked the T-cell responses seen in COVID-19 patients, causing cytokine storm and displaying a distinct memory, exhausted, and regulatory T-cell phenotype. THP1 remarkably augmented cytokine release in SARS-CoV-2-S CAR-T cells when they were in coculture. Based on this "two-cell" (CAR-T and THP1 cells) model, we screened an FDA-approved drug library and found that felodipine, fasudil, imatinib, and caspofungin were effective in suppressing the release of cytokines, which was likely due to their ability to suppress the NF-κB pathway in vitro. Felodipine, fasudil, imatinib, and caspofungin were further demonstrated, although to different extents, to attenuate lethal inflammation, ameliorate severe pneumonia, and prevent mortality in a SARS-CoV-2-infected Syrian hamster model, which were also linked to their suppressive role in inflammation. In summary, we established a SARS-CoV-2-specific CAR-T-cell model that can be utilized as a tool for anti-inflammatory drug screening in a fast and high-throughput manner. The drugs identified herein have great potential for early treatment to prevent COVID-19 patients from cytokine storm-induced lethality in the clinic because they are safe, inexpensive, and easily accessible for immediate use in most countries.


Assuntos
COVID-19 , Receptores de Antígenos Quiméricos , Humanos , SARS-CoV-2/metabolismo , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Caspofungina , Felodipino , Síndrome da Liberação de Citocina/tratamento farmacológico , Inflamação , Citocinas/metabolismo
2.
Gut ; 69(2): 343-354, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926653

RESUMO

OBJECTIVE: This study aimed to develop a novel therapeutic vaccine based on a unique B cell epitope and investigate its therapeutic potential against chronic hepatitis B (CHB) in animal models. METHODS: A series of peptides and carrier proteins were evaluated in HBV-tolerant mice to obtain an optimised therapeutic molecule. The immunogenicity, therapeutic efficacy and mechanism of the candidate were investigated systematically. RESULTS: Among the HBsAg-aa119-125-containing peptides evaluated in this study, HBsAg-aa113-135 (SEQ13) exhibited the most striking therapeutic effects. A novel immunoenhanced virus-like particle carrier (CR-T3) derived from the roundleaf bat HBV core antigen (RBHBcAg) was created and used to display SEQ13, forming candidate molecule CR-T3-SEQ13. Multiple copies of SEQ13 displayed on the surface of this particulate antigen promote the induction of a potent anti-HBs antibody response in mice, rabbits and cynomolgus monkeys. Sera and purified polyclonal IgG from the immunised animals neutralised HBV infection in vitro and mediated efficient HBV/hepatitis B virus surface antigen (HBsAg) clearance in the mice. CR-T3-SEQ13-based vaccination induced long-term suppression of HBsAg and HBV DNA in HBV transgenic mice and eradicated the virus completely in hydrodynamic-based HBV carrier mice. The suppressive effects on HBsAg were strongly correlated with the anti-HBs level after vaccination, suggesting that the main mechanism of CR-T3-SEQ13 vaccination therapy was the induction of a SEQ13-specific antibody response that mediated HBV/HBsAg clearance. CONCLUSIONS: The novel particulate protein CR-T3-SEQ13 suppressed HBsAg effectively through induction of a humoural immune response in HBV-tolerant mice. This B cell epitope-based therapeutic vaccine may provide a novel immunotherapeutic agent against chronic HBV infection in humans.


Assuntos
Epitopos de Linfócito B/imunologia , Antígenos de Superfície da Hepatite B/sangue , Vacinas contra Hepatite B/imunologia , Hepatite B Crônica/imunologia , Adjuvantes Imunológicos , Animais , Antivirais/uso terapêutico , Terapia Combinada , DNA Viral/sangue , Relação Dose-Resposta Imunológica , Feminino , Anticorpos Anti-Hepatite B/biossíntese , Vacinas contra Hepatite B/uso terapêutico , Vírus da Hepatite B/genética , Hepatite B Crônica/terapia , Hepatite B Crônica/virologia , Imunidade Humoral/imunologia , Imunoterapia/métodos , Macaca fascicularis , Masculino , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...