Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279341

RESUMO

Universal stress proteins (USPs) play an important regulatory role in responses to abiotic stress. Most of the research related to USPs so far has been conducted on plant models such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.). The potato (Solanum tuberosum L.) is one of the four major food crops in the world. The potato is susceptible to mechanical damage and infection by pathogenic fungi during transport and storage. Deoxynivalenol (DON) released by Fusarium can seriously degrade the quality of potatoes. As a result, it is of great significance to study the expression pattern of the potato StUSP gene family under abiotic stress conditions. In this study, a total of 108 USP genes were identified from the genome of the Atlantic potato, divided into four subgroups. Based on their genetic structure, the physical and chemical properties of their proteins and other aspects of their biological characteristics are comprehensively analyzed. Collinear analysis showed that the homologous genes of StUSPs and four other representative species (Solanum lycopersicum, Arabidopsis, Oryza sativa L., and Nicotiana attenuata) were highly conserved. The cis-regulatory elements of the StUSPs promoter are involved in plant hormones, environmental stress, mechanical damage, and light response. RNA-seq analysis showed that there are differences in the expression patterns of members of each subgroup under different abiotic stresses. A Weighted Gene Coexpression Network Analysis (WGCNA) of the central gene showed that the differential coexpression gene is mainly involved in the plant-pathogen response process, plant hormone signal transduction, and the biosynthesis process of secondary metabolites. Through qRT-PCR analysis, it was confirmed that StUSP13, StUSP14, StUSP15, and StUSP41 may be important candidate genes involved in the response to adversity stress in potatoes. The results of this study provide a basis for further research on the functional analysis of StUSPs in the response of potatoes to adversity stress.


Assuntos
Arabidopsis , Solanum tuberosum , Tricotecenos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Choque Térmico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175760

RESUMO

Phytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.


Assuntos
Phytophthora infestans , Solanum tuberosum , Transcriptoma , Solanum tuberosum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Flavonoides/metabolismo , Metaboloma , Doenças das Plantas/microbiologia , Phytophthora infestans/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...