Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(7): e573, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38882211

RESUMO

Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition. In this study, we evaluate the potential of recombinant nanoparticles derived from Araneus ventricosus MiSp as a protein delivery carrier. The MiSp-based nanoparticles were able to serve as an effective delivery system, achieving nearly 100% efficiency in loading the model protein lysozyme, and displayed a sustained release profile at physiological pH. These nanoparticles could significantly improve the delivery efficacy of the model proteins through different administration routes. Furthermore, nanoparticles loaded with model protein antigen lysozyme after subcutaneous or intramuscular administration could enhance antigen-specific immune responses in mouse models, through a mechanism involving antigen-depot effects at the injection site, long-term antigen persistence, and efficient uptake by dendritic cells as well as internalization by lymph nodes. These findings highlight the transnational potential of MiSp-based nanoparticle system for protein drug and vaccine delivery.

2.
Small ; 19(46): e2304031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455347

RESUMO

Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-ß peptide (Aß) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aß capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aß forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.


Assuntos
Fibroínas , Aranhas , Humanos , Animais , Seda/química , Fibroínas/química , Polimerização , Amiloide , Peptídeos beta-Amiloides/metabolismo , Aranhas/metabolismo
3.
ACS Biomater Sci Eng ; 8(1): 119-127, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34908395

RESUMO

Spider flagelliform silk shows the best extensibility among various types of silk, but its biomimetic preparation has not been much studied. Herein, five customized flagelliform spidroins (FlSps: S and NTDFl-Sn-CTDFl, n = 1-4), in which the repetitive region (S) and N-/C- terminal domains (NTDFl and CTDFl) are from the same spidroin and spider species, were produced recombinantly. The recombinant spidroins with terminal domains were able to form silk-like fibers with diameters of ∼5 µm by manual pulling at pH 8.0, where the secondary structure transformation occurred. The silk-like fibers from NTDFl-S4-CTDFl showed the highest tensile strength (∼250 MPa), while those ones with 1-3 S broke at a similar stress (∼180 MPa), suggesting that increasing the amounts of the repetitive region can improve the tensile strength, but a certain threshold might need to be reached. This study shows successful preparation of flagelliform silk-like fibers with good mechanical properties, providing general insights into efficient biomimetic preparations of spider silks.


Assuntos
Fibroínas , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Resistência à Tração
4.
BMC Biotechnol ; 20(1): 37, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650749

RESUMO

BACKGROUND: Spider silk is a proteinaceous fiber with remarkable mechanical properties spun from spider silk proteins (spidroins). Engineering spidroins have been successfully produced in a variety of heterologous hosts and the most widely used expression system is Escherichia coli (E. coli). So far, recombinantly expressed spidroins often form insoluble inclusion bodies (IBs), which will often be dissolved under extremely harsh conditions in a traditional manner, e.g. either 8 mol/L urea or 6 mol/L guanidine hydrochloride, highly risking to poor recovery of bioactive proteins as well as unexpected precipitations during dialysis process. RESULTS: Here, we present a mild solubilization strategy-one-step heating method to solubilize spidroins from IBs, with combining spidroins' high thermal stability with low concentration of urea. A 430-aa recombinant protein (designated as NM) derived from the minor ampullate spidroin of Araneus ventricosus was expressed in E. coli, and the recombinant proteins were mainly present in insoluble fraction as IBs. The isolated IBs were solubilized parallelly by both traditional urea-denatured method and one-step heating method, respectively. The solubilization efficiency of NM IBs in Tris-HCl pH 8.0 containing 4 mol/L urea by one-step heating method was already comparable to that of 7 mol/L urea with using traditional urea-denatured method. The effects of buffer, pH and temperature conditions on NM IBs solubilization of one-step heating method were evaluated, respectively, based on which the recommended conditions are: heating temperature 70-90 °C for 20 min, pH 7.0-10, urea concentration 2-4 mol/L in normal biological buffers. The recombinant NM generated via the one-step heating method held the potential functions with self-assembling into sphere nanoparticles with smooth morphology. CONCLUSIONS: The one-step heating method introduced here efficiently solubilizes IBs under relatively mild conditions compared to the traditional ones, which might be important for the downstream applications; however, this protocol should be pursued carefully in terms of urea-induced modification sensitive applications. Further, this method can be applied under broad buffer, pH and temperature conditions, conferring the potential to apply to other thermal stable proteins.


Assuntos
Proteínas de Artrópodes/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Fibroínas/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Nanopartículas/química , Solubilidade
5.
Microb Cell Fact ; 18(1): 66, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947747

RESUMO

BACKGROUND: Oral vaccine is highly desired for infectious disease which is caused by pathogens infection through the mucosal surface. The design of suitable vaccine delivery system is ongoing for the antigen protection from the harsh gastric environment and target to the Peyer's patches to induce sufficient mucosal immune responses. Among various potential delivery systems, bacterial inclusion bodies have been widely used as delivery systems in the field of nanobiomedicine. However, a large number of heterologous complex proteins could be difficult to propagate in E. coli and fusion partners are often used to enhance target protein expression. As a safety concern the fusion protein need to be removed from the target protein to get tag-free protein, especially for the production of protein antigen in vaccinology. Until now, there is no report on how to remove fusion tag from inclusion body particles in vitro and in vivo. Coxsackievirus B3 (CVB3) is a leading causative agent of viral myocarditis and orally protein vaccine is high desired for CVB3-induced myocarditis. In this context, we explored a tag-free VP1 inclusion body nanoparticles production protocol though a truncated Ssp DnaX mini-intein spontaneous C-cleavage in vivo and also exploited the VP1 inclusion bodies as an oral protein nanoparticle vaccine to protect mice against CVB3-induced myocarditis. RESULTS: We successfully produced the tag-free VP1 inclusion body nanoparticle antigen of CVB3 and orally administrated to mice. The results showed that the tag-free VP1 inclusion body nanoparticles as an effective antigen delivery system targeting to the Peyer's patches had the capacity to induce mucosal immunity as well as to efficiently protect mice from CVB3 induce myocarditis without any adjuvant. Then, we proposed the use of VP1 inclusion body nanoparticles as good candidate for oral vaccine to against CVB3-induced myocarditis. CONCLUSIONS: Our tag-free inclusion body nanoparticles production procedure is easy and low cost and may have universal applicability to produce a variety of tag-free inclusion body nanoparticles for oral vaccine.


Assuntos
Proteínas do Capsídeo/imunologia , Enterovirus Humano B/imunologia , Miocardite/prevenção & controle , Vacinas Virais/imunologia , Administração Oral , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Enterovirus Humano B/química , Enterovirus Humano B/genética , Humanos , Imunidade nas Mucosas , Inteínas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/imunologia , Miocardite/virologia , Nanopartículas/química , Vacinas Virais/administração & dosagem , Vacinas Virais/química , Vacinas Virais/genética
6.
Sci Rep ; 7: 41485, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148910

RESUMO

CVB3 is a common human pathogen to be highly lethal to newborns and causes viral myocarditis and pancreatitis in adults. However, there is no vaccine available for clinical use. CVB3 capsid protein VP1 is an immunodominant structural protein, containing several B- and T-cell epitopes. However, immunization of mice with VP1 protein is ineffective. Cyclization of peptide is commonly used to improve their in vivo stability and biological activity. Here, we designed and synthesizd cyclic VP1 protein by using engineered split Rma DnaB intein and the cyclization efficiency was 100% in E. coli. As a result, the cyclic VP1 was significantly more stable against irreversible aggregation upon heating and against carboxypeptidase in vitro and the degradation rate was more slowly in vivo. Compared with linear VP1, immunization mice with circular VP1 significantly increased CVB3-specific serum IgG level and augmented CVB3-specific cellular immune responses, consequently afforded better protection against CVB3-induced viral myocarditis. The cyclic VP1 may be a novel candidate protein vaccine for preventing CVB3 infection and similar approaches could be employed to a variety of protein vaccines to enhance their protection effect.


Assuntos
Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Inteínas , Miocardite/patologia , Miocardite/virologia , Proteínas Virais de Fusão/metabolismo , Animais , Diferenciação Celular , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Ciclização , Células Dendríticas/metabolismo , Meia-Vida , Células HeLa , Humanos , Imunidade Celular , Imunidade Humoral , Masculino , Camundongos Endogâmicos BALB C , Miocardite/imunologia , Reprodutibilidade dos Testes , Trans-Splicing/genética , Vacinação , Proteínas Virais de Fusão/isolamento & purificação
7.
Microb Cell Fact ; 14: 24, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25879903

RESUMO

BACKGROUND: Mild solubilization of inclusion bodies has attracted attention in recent days, with an objective to preserve the existing native-like secondary structure of proteins, reduce protein aggregation during refolding and recovering high amount of bioactive proteins from inclusion bodies. RESULTS: Here we presented an efficient method for mild solubilization of inclusion bodies by using a freeze-thawing process in the presence of low concentration of urea. We used two different proteins to demonstrate the advantage of this method over the traditional urea-denatured method: enhanced green fluorescent protein (EGFP) and the catalytic domain of human macrophage metalloelastase (MMP-12_CAT). Firstly, PBS buffer at pH 8 containing different molar concentration of urea (0-8 M) were used to solubilize EGFP and MMP-12-CAT inclusion bodies and the solubility achieved in 2 M urea in PBS buffer by freeze-thawing method was comparable to that of PBS buffer containing 8 M urea by traditional urea-denatured method. Secondly, different solvents were used to solubilize EGFP and MMP-12_CAT from inclusion bodies and the results indicated that a wide range of buffers containing 2 M urea could efficiently solubilize EGFP and MMP-12_CAT inclusion bodies by freeze-thawing method. Thirdly, the effect of pH and freezing temperature on the solubility of EGFP and MMP-12_CAT inclusion bodies were studied, revealing that solubilization of inclusion bodies by freeze-thawing method is pH dependent and the optimal freezing temperature indicated here is -20°C. Forth, the solubilized EGFP and MMP-12_CAT from inclusion bodies were refolded by rapid dilution and dialysis, respectively. The results showed that the refolded efficiency is much higher (more than twice) from freeze-thawing method than the traditional urea-denatured method. The freeze-thawing method containing 2 M urea also effectively solubilized a number of proteins as inclusion bodies in E.coli. CONCLUSIONS: Mild solubilization of inclusion body proteins using the freeze-thawing method is simple, highly efficient and generally applicable. The method can be utilized to prepare large quantities of bioactive soluble proteins from inclusion bodies for basic research and industrial purpose.


Assuntos
Corpos de Inclusão/metabolismo , Proteínas Recombinantes de Fusão/química , Domínio Catalítico , Escherichia coli/metabolismo , Congelamento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Dobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade , Temperatura , Ureia/química
8.
FEBS Lett ; 585(15): 2513-8, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21741975

RESUMO

Previously, the C-terminal fragment of a split intein was known to undergo controllable C-cleavage at its C-terminus only when the N-terminal fragment of the intein was added. Here we constructed a similar split intein from the Ssp DnaX intein, but we unexpectedly observed that its C-terminal 136-aa fragment could undergo spontaneous C-cleavage without the N-terminal fragment that was up to 15 aa long and contained the conserved intein motif A. This C-cleavage activity was significantly decreased by a mutation of the conserved Thr residue in the conserved intein motif B. These findings suggest a robust intein structure in the absence of motif A and a larger role of motif B in the third step of the protein splicing mechanism.


Assuntos
Motivos de Aminoácidos , Inteínas , Processamento de Proteína , Sequência de Aminoácidos , Sequência Conservada , Escherichia coli/genética , Hidrólise , Fragmentos de Peptídeos , Plasmídeos , Transdução Genética
9.
Protein Pept Lett ; 18(12): 1226-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21707520

RESUMO

Protein-splicing inteins are widespread in nature and have found many applications in protein research and engineering. The mechanism of protein splicing typically requires a nucleophilic amino acid residue at both position 1 (first residue of intein) and position +1 (first residue after intein), however it was not clear whether or how the three different nucleophilic residues (Cys, Ser, and Thr) would work differently at these two positions. To use intein in a target protein of interest, one needs to choose an intein insertion site to have a nucleophilic residue at position +1, therefore it is desirable to know what nucleophilic residue(s) are preferred by different inteins. In this study we began with a statistical analysis of known inteins, which showed an unequal distribution of the three nucleophilic residues at positions 1 and +1, and then subjected six different mini-inteins to site-directed mutagenesis to systematically test the functionality of the three nucleophilic residues at the two positions. At position 1, most natural inteins had Cys and none had Thr. When the Cys at position 1 of the six inteins was mutated to Ser and Thr, the splicing activity was abolished in all except one case. At position +1, Cys and Ser were nearly equally abundant in natural inteins, and they were found to be functionally interchangeable in the six inteins of this study. When the two positions were studied as 1/+1 combination, the Cys/Ser combination was abundant in natural inteins, whereas the Ser/Cys combination was conspicuously absent. Similarly, all of the six inteins of this study spliced with the Cys/Ser combination, whereas none spliced with the Ser/Cys combination. These findings have interesting implications on the mechanism of splicing and the selection of intein insertion sites, and they also produced two rare mini-inteins that could splice with Thr at position +1.


Assuntos
Inteínas/fisiologia , Processamento de Proteína/fisiologia , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Catálise , Inteínas/genética , Dados de Sequência Molecular , Mutagênese , Processamento de Proteína/genética , Proteínas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...