Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 644: 140-148, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36646002

RESUMO

Ischemia reperfusion (I/R) injury remains a frequent adverse event that accompanies heart transplantation. Oxidative stress and aberrant production of free radicals were regarded as the culprit of cell death and tissue damage in post-transplant IR injury. Mst1 has been identified as a mediator of oxidative stress and Nrf2 regulates anti-oxidative enzymes, however, the interaction between Mst1 and Nrf2 anti-oxidative stress pathway remains to be clarified in the event of cardiac IR injury. Herein, the model of ischemia-reperfusion injury in heterotopic heart transplantation mice was firstly established.. We observed that cardiac IR induced upregulation of Mst1 and activation of Nrf2/HO-1pathway in mice receiving heterotopic heart transplantation. Further Cobalt dichloride-induced oxidative stress model of RAW264.7 macrophage cells were then established to mimic cardiac I/R injury, results showed that exposure to CoCl2 induced the upregulation of Mst1 and activation of Keap1/Nrf2 pathway, and genetic ablation of Mst-1 and inhibition of Keap1/Nrf2 pathway aggravated oxidative damage in those cells. Additional in vivo study showed that transfection of Mst1 shRNA spurred ROS generation and worsened cardiac damage in IR mice. Meanwhile, Mst1-KD mice receiving heart transplantation showed markedly downregulation of Nrf2, HO-1 yet upregulation of Keap1, indicating diminished protective effect against tissue damage caused by IR probably owing to the frustration of Keap1/Nrf2 pathway. Taken together, our findings demonstrated the protective effect of Mst1 from cardiac IR injury via triggering Keap1/Nrf2 axis and suppressing ROS generation, which shed light on the promising role of Mst1 in transitional management of IR injury resulted from cardiac transplantation.


Assuntos
Transplante de Coração , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Camundongos , Transplante de Coração/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...