Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(11): 13551-13557, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32091870

RESUMO

Polyelectrolyte microcapsules can be produced either by the layer-by-layer assembly technique or the formation of polyelectrolyte complexes at the liquid-liquid interface. Here, we describe the design and construction of DNA microcapsules using the cooperative assembly of DNA and amine-functionalized polyhedral oligomeric silsesquioxane (POSS-NH2) at the oil-water interface. "Janus-like" DNA surfactants (DNASs) assemble in situ at the interface, forming an elastic film. By controlling the jamming and unjamming behavior of DNASs, the interfacial assemblies can assume three different physical states: solid-like, elastomer-like, and liquid-like, similar to that seen with thermoplastics upon heating, that change from a glassy to a rubbery state, and then to a viscous liquid. By the interfacial jamming of DNASs, the liquid structures can be locked-in and reconfigured, showing promising potentials for drug delivery, biphasic reactors, and programmable liquid constructs.


Assuntos
Cápsulas/química , DNA/química , Tensoativos/química , Cinética , Nanopartículas Multifuncionais/química , Polieletrólitos/química
2.
Angew Chem Int Ed Engl ; 58(50): 18171-18176, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591756

RESUMO

2D transition metal carbides and nitrides (MXenes), a class of emerging nanomaterials with intriguing properties, have attracted significant attention in recent years. However, owing to the highly hydrophilic nature of MXene nanosheets, assembly strategies of MXene at liquid-liquid interfaces have been very limited and challenging. Herein, through the cooperative assembly of MXene and amine-functionalized polyhedral oligomeric silsesquioxane at the oil-water interface, we report the formation, assembly, and jamming of a new type MXene-based Janus-like nanoparticle surfactants, termed MXene-surfactants (MXSs), which can significantly enhance the interfacial activity of MXene nanosheets. More importantly, this simple assembly strategy opens a new platform for the fabrication of functional MXene assemblies from mesoscale (e.g., structured liquids) to macroscale (e.g., aerogels), that can be used for a range of applications, including nanocomposites, electronic devices, and all-liquid microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...