Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(9): e2307179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857576

RESUMO

Rechargeable battery devices with high energy density are highly demanded by the modern society. The use of lithium (Li) anodes is extremely attractive for future rechargeable battery devices. However, the notorious Li dendritic and instability of solid electrolyte interface (SEI) issues pose series of challenge for metal anodes. Here, based on the inspiration of in situ photoelectrochemical engineering, it is showed that a tailor-made composite photoanodes with good photoelectrochemical properties (Li affinity property and photocatalytic property) can significantly improve the electrochemical deposition behavior of Li anodes. The light-assisted Li anode is accommodated in the tailor-made current collector without uncontrollable Li dendrites. The as-prepared light-assisted Li metal anode can achieve the in situ stabilization of SEI layer under illumination. The corresponding in situ formation mechanism and photocatalytic mechanism of composite photoanodes are systematically investigated via DFT theoretical calculation, ex situ UV-vis and ex situ XPS characterization. It is worth mentioning that the as-prepared composite photoanodes can adapt to the ultra-high current density of 15 mA cm-2 and the cycle capacity of 15 mAh cm-2 under light, showing no dendritic morphology and low hysteresis voltage. This work is of great significance for the commercialization of new generation Li metal batteries.

2.
Small ; 19(50): e2303745, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616514

RESUMO

Rechargeable battery devices with high energy density are highly demanded by  our  modern society. The use of metal anodes is extremely attractive for future rechargeable battery devices. However, the notorious metal dendritic and instability of solid electrolyte interface issues pose a series of challenges for metal anodes. Recently, considering the indigestible dynamical behavior of metal anodes, photoelectrochemical engineering of light-assisted metal anodes have been rapidly developed since they efficiently utilize the integration and synergy of oriented crystal engineering and photocatalysis engineering, which provided a potential way to unlock the interface electrochemical mechanism and deposition reaction kinetics of metal anodes. This review starts with the fundamentals of photoelectrochemical engineering and follows with the state-of-art advance of photoelectrochemical engineering for light-assisted rechargeable metal batteries where photoelectrode materials, working principles, types, and practical applications are explained. The last section summarizes the major challenges and some invigorating perspectives for future research on light-assisted rechargeable metal batteries.

3.
Small ; 19(47): e2304045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485629

RESUMO

The design of a novel photoelectric integrated system is considered to be an efficient way to utilize and store inexhaustible solar energy. However, the mechanism of photoelectrode under illuminate conditions is still unclear. Density functional theory (DFT) provides standardized analysis and becomes a powerful way to explain the photoelectrochemical mechanism. Herein, the feasibility of four metal oxide configurations as photoelectrode materials by using a high throughput calculation method based on DFT are investigated. According to the photoelectrochemical properties, band structure and density of states are calculated, and the intercalate/deintercalate simulation is performed with adsorption configuration. The calculation indicates that the band gap of Fe2 CoO4 (2.404 eV) is narrower than that of Co3 O4 (2.553 eV), as well as stronger adsorption energy (-3.293 eV). The relationship between the electronic structure and the photoelectrochemical performance is analyzed and verified according to the predicted DFT results by subsequent experiments. Results show that the Fe2 CoO4 photoelectrode samples exhibit higher coulombic efficiency (97.4%) than that under dark conditions (94.9%), which is consistent with the DFT results. This work provides a general method for the design of integrated photoelectrode materials and is expected to be enlightening for the adjustment of light-assisted properties of multifunctional materials.

4.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837059

RESUMO

Recently, Prussian blue analogues (PBAs)-based anode materials (oxides, sulfides, selenides, phosphides, borides, and carbides) have been extensively investigated in the field of energy conversion and storage. This is due to PBAs' unique properties, including high theoretical specific capacity, environmental friendly, and low cost. We thoroughly discussed the formation of PBAs in conjunction with other materials. The performance of composite materials improves the electrochemical performance of its energy storage materials. Furthermore, new insights are provided for the manufacture of low-cost, high-capacity, and long-life battery materials in order to solve the difficulties in different electrode materials, combined with advanced manufacturing technology and principles. Finally, PBAs and their composites' future challenges and opportunities are discussed.

5.
Small ; 19(14): e2206848, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604991

RESUMO

Great changes have occurred in the energy storage area in recent years as a result of rapid economic expansion. People have conducted substantial research on sustainable energy conversion and storage systems in order to mitigate the looming energy crisis. As a result, developing energy storage materials is critical. Materials with an open frame structure are known as Prussian blue analogs (PBAs). Anode materials for oxides, sulfides, selenides, phosphides, borides, and carbides have been extensively explored as anode materials in the field of energy conversion and storage in recent years. The advantages and disadvantages of oxides, sulfides, selenides, phosphides, borides, carbides, and other elements, as well as experimental methodologies and electrochemical properties, are discussed in this work. The findings reveal that employing oxides, sulfides, selenides, phosphides, borides, and other electrode materials to overcome the problems of low conductivity, excessive material loss, and low specific volume is ineffective. Therefore, this review intends to address the issues of diverse energy storage materials by combining multiple technologies to manufacture battery materials with low cost, large capacity, and extended service life.

6.
ACS Nano ; 16(10): 17454-17465, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36137269

RESUMO

Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads to safety issues and a low Coulombic efficiency (CE), which hinders the commercialization of Li metal batteries. Stable Li anodes based on the tailored plane deposition and photoassisted synergistic current collectors are currently the subject of research; however, there are few related studies. To suppress the growth of Li dendrites and achieve dense Li deposition, we design a low-cost customized-facet/photoassisted synergistic dendrite-free anode. The tailored (002) plane endows it with a nanorod array/microsphere composite structure and exhibits a strong affinity for Li, which effectively reduces the Li+ nucleation overpotential and promotes uniform Li deposition. Notably, during the photoassisted Li deposition/stripping process, due to electron-hole separation, a weakly charged layer is formed on the (002) surface and local charge carrier changes are induced, reducing the overpotential by 8.3 mV, enhancing the reaction kinetics, and resulting in a high CE of ∼99.3% for the 300th cycle at 2 mA cm-2. This work is of great significance for the field of next-generation photoassisted Li metal anodes.

7.
ACS Appl Mater Interfaces ; 14(34): 38696-38705, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977415

RESUMO

Li metal, the ideal anode material for rechargeable batteries, suffers from the inherent limitations of uneven interface kinetics and dendrite growth. Herein, we tackle this issue by applying an interface crystallographic optimization strategy. We demonstrate a promising metallic Li anode design by introducing a customized magnetron sputtering layer of preferred orientation copper coating on the surface of a current collector. The sputtered Cu layer employed is stable against the highly reactive robust Li metal to render the surface lithiophilic and achieve promoted interface kinetics due to the perfect interface-crystal plane matching between the sputtered copper layer and premier Li metal. The dendrite-free Li anode sustains stable interface kinetics and achieves a stable life span of 200 cycles during the plating and stripping process in commercial carbonate electrolytes. This design based on crystallographic optimization provides important insights into the design principles of the Li metal anode as well as other alkali metal anodes (Na, K, Zn, Mg, and Al).

8.
J Colloid Interface Sci ; 621: 41-66, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35452929

RESUMO

All-solid-state metal batteries (ASSMBs) have been regarded as the ideal candidate for the next-generation high-energy storage system due to their ultrahigh specific capacity and the lowest redox potential. However, the uncontrollable chemical reactivity during cycling which directly determines the growth behaviour of metal dendrites, the low coulombic efficiency and the safety concerns severely limit their real-world applications.. Crystallographic optimization based on solid-state electrolytes (SSEs) provides an atomic-scale and fundamental solution for the inhibition of dendrite growth in metal anodes, which has attracted widespread attentions. From this perspective, we summarize the recent advance of the crystallographic optimization for various classes of solid-state electrolytes. We highlight the recent experimental findings of crystallographic optimization for a new generation of all-solid-state batteries, including lithium-ion batteries, sodium-ion batteries, magnesium-ion batteries, with the aim of providing a deeper understanding of the crystallographic reactions in ASSMBs. The challenges and prospects for the future design and engineering of crystallographic optimization of SSEs are discussed, providing ideas for further research into crystallographic optimization to improve the performance of rechargeable batteries.

9.
ACS Nano ; 15(10): 16207-16217, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34595920

RESUMO

The practical application of Na-S batteries is largely hindered by their low mass loading, inferior rate capability, and poor cycling performance. Herein, we report a design strategy for encapsulation of sodium polysulfides using Ti3C2Tx MXene. Porous nitrogen-doped Ti3C2Tx MXene microspheres have been synthesized by a facile synthesis method. Porous nitrogen-doped Ti3C2Tx MXene microspheres contain abundant pore structures and heteroatom functional groups for structural and chemical synergistic encapsulation of sodium polysulfides. Sodium-sulfur batteries, based on the as-proposed cathode, demonstrated outstanding electrochemical performances, including a high reversible capacity (980 mAh g-1 at 0.5 C rate) and extended cycling stability (450.1 mAh g-1 at 2 C after 1000 cycles at a high areal sulfur loading of 5.5 mg cm-2). This MXene-based hybrid material is a promising cathode host material for polysulfide-retention, enabling high-performance Na-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...