Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609223

RESUMO

Amounts of microbiome studies have uncovered the microbial communities of traditional food fermentations, while in which the phageome development with time is poorly understood. Here, we conducted a study to decipher both phageome and bacteriome of the traditional rice vinegar fermentation. The vinegar phageomes showed significant differences in the alpha diversity, network density and clustering coefficient over time. Peduoviridae had the highest relative abundance. Moreover, the phageome negatively correlated to the cognate bacteriome in alpha diversity, and undergone constantly contracting and shifting across the temporal scale. Nevertheless, 257 core virial clusters (VCs) persistently occurred with time whatever the significant impacts imposed by the varied physiochemical properties. Glycoside hydrolase (GH) and glycosyltransferase (GT) families genes displayed the higher abundances across all samples. Intriguingly, diversely structuring of toxin-antitoxin systems (TAs) and CRISPR-Cas arrays were frequently harbored by phage genomes. Their divergent organization and encoding attributes underlie the multiple biological roles in modulation of network and/or contest of phage community as well as bacterial host community. This phageome-wide mapping will fuel the current insights of phage community ecology in other traditional fermented ecosystems that are challenging to decipher.


Assuntos
Bacteriófagos , Microbiota , Oryza , Humanos , Ácido Acético , Fermentação , Bacteriófagos/genética , Microbiota/genética
2.
Front Microbiol ; 13: 951030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983328

RESUMO

Acetobacter is the predominant microbe in vinegar production, particularly in those natural fermentations that are achieved by complex microbial communities. Co-evolution of prophages with Acetobacter, including integration, release, and dissemination, heavily affects the genome stability and production performance of industrial strains. However, little has been discussed yet about prophages in Acetobacter. Here, prophage prediction analysis using 148 available genomes from 34 Acetobacter species was carried out. In addition, the type II toxin-antitoxin systems (TAs) and CRISPR-Cas systems encoded by prophages or the chromosome were analyzed. Totally, 12,000 prophage fragments were found, of which 350 putatively active prophages were identified in 86.5% of the selected genomes. Most of the active prophages (83.4%) belonged to the order Caudovirales dominated by the families Siphoviridae and Myroviridae prophages (71.4%). Notably, Acetobacter strains survived in complex environments that frequently carried multiple prophages compared with that in restricted habits. Acetobacter prophages showed high genome diversity and horizontal gene transfer across different bacterial species by genomic feature characterization, average nucleotide identity (ANI), and gene structure visualization analyses. About 31.14% of prophages carry type II TAS, suggesting its important role in addiction, bacterial defense, and growth-associated bioprocesses to prophages and hosts. Intriguingly, the genes coding for Cse1, Cse2, Cse3, Cse4, and Cas5e involved in type I-E and Csy4 involved in type I-F CRISPR arrays were firstly found in two prophages. Type II-C CRISPR-Cas system existed only in Acetobacter aceti, while the other Acetobacter species harbored the intact or eroded type I CRISPR-Cas systems. Totally, the results of this study provide fundamental clues for future studies on the role of prophages in the cell physiology and environmental behavior of Acetobacter.

3.
Appl Microbiol Biotechnol ; 104(15): 6731-6747, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32535695

RESUMO

Toxin-antitoxin systems (TASs) have attracted much attention due to their important physiological functions. These small genetic factors have been widely studied mostly in commensal Escherichia coli strains, whereas the role of TASs in the probiotic E. coli Nissle 1917 (EcN) is still elusive. Here, the physiological role of chromosomally encoded type II TASs in EcN was examined. We showed that gene pair ECOLIN_00240-ECOLIN_00245 and ECOLIN_08365-ECOLIN_08370 were two functional TASs encoding CcdAB and HipAB, respectively. The homologs of CcdAB and HipAB were more conserved in E. coli species belonging to pathogenic groups, suggesting their important roles in EcN. CRISPRi-mediated repression of ccdAB and hipAB significantly reduced the biofilm formation of EcN in the stationary phase. Moreover, ccdAB and hipAB were shown to be responsible for the persister formation in EcN. Biofilm and persister formation of EcN controlled by the ccdAB and hipAB were associated with the expression of genes involved in DNA synthesis, SOS response, and stringent response. Besides, CRISPRi was proposed to be an efficient tool in annotating multiple TASs simultaneously. Collectively, our results advance knowledge and understanding of the role of TASs in EcN, which will enhance the utility of EcN in probiotic therapy.Key points• Two TASs in EcN were identified as hipAB and ccdAB.• Knockdown of HipAB and CcdAB resulted in decreased biofilm formation of EcN.• Transcriptional silencing of hipAB and ccdAB affected the persister formation of EcN.• An attractive link between TASs and stress response was unraveled in EcN.• CRISPRi afforded a fast and in situ annotation of multiple TASs simultaneously.


Assuntos
Cromossomos Bacterianos/genética , Escherichia coli/genética , Óperon/genética , Probióticos , Sistemas Toxina-Antitoxina/genética , Biofilmes/crescimento & desenvolvimento , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Silenciamento de Genes , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...