Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38869744

RESUMO

PURPOSE: Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION: Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.

2.
Biomed Pharmacother ; 165: 115255, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549462

RESUMO

The current study intended to delve into the mechanisms of dexmedetomidine (Dex) in regulating myocardial pyroptosis against myocardial ischemia/reperfusion injury (MIRI). The rat MIRI models were induced by ligation/release of the coronary artery in vivo and Langendorff perfusion ex vivo. Hemodynamic parameters, infarction sizes, and histopathological changes were assessed to understand the effects of Dex on MIRI. We explored the mechanisms through functional experiments on an H9c2 cell hypoxia/reoxygenation (H/R) model. Cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8) and AV/PI dual staining respectively. The expressions of miR-665 and MEF2D mRNA were detected by qRT-PCR. Western blot was employed to determine the expression levels of pyroptosis- and signaling pathway- related proteins. The interplays between miR-665 and MEF2D were validated by Dual-luciferase reporter assays. Our findings indicated that Dex preconditioning dramatically attenuated hemodynamic derangements, infarct size, and histopathological damage in rats undergoing MIRI. Dex markedly augmented cell viability, while suppressing cell apoptosis and expressions of NLRP3, cleaved-caspase-1, ASC, GSDMD, IL-1ß, and IL-18 in H9c2 cells subjected to H/R injury. MiR-665 was significantly upregulated, MEF2D and Nrf2 downregulated following H/R, whereas Dex preconditioning reversed these changes. MEF2D was validated to be a target gene of miR-665. Overexpression of miR-665 decreased the expression of MEF2D and blunted the protective effects of Dex in H9c2 cells. Moreover, the functional rescue experiment further verified that Dex regulated MEF2D/Nrf2 pathway via miR-665. In conclusion, Dex mitigates MIRI through inhibiting pyroptosis via regulating miR-665/MEF2D/Nrf2 axis.


Assuntos
Dexmedetomidina , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Piroptose , Dexmedetomidina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , MicroRNAs/metabolismo , Apoptose , Miócitos Cardíacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição MEF2/metabolismo
3.
Biomed Pharmacother ; 153: 113498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076588

RESUMO

The present study aimed to explore the role of oxytocin (OT) in myocardial injury induced by ischemia/reperfusion (I/R) and hyperglycemia and its underlying mechanisms. In this study, the isolated rat hearts underwent I/R in Langendorff perfusion model and H9c2 cells were subjected to hypoxia/reoxygenation (H/R) to establish an in vitro model. I/R injury was induced by exposing the rat hearts to 40 min of global ischemia followed by 60 min of reperfusion. H9c2 cells were cultured under the normoglycemic or hyperglycemic condition with or without pretreatment of OT, and then exposed to 4 h of hypoxia and 2 h of reoxygenation. Measurement indicators included myocardial infarct size assessed by triphenyltetrazolium chloride (TTC) staining and hemodynamic parameters in the ex vivo model as well as cell viability detected by cell counting kit 8 (CCK-8), apoptotic rate evaluated by flow cytometry, and the protein expressions by Western blot. The findings demonstrated that OT attenuated myocardial I/R injury. First, OT preconditioning significantly reduced hemodynamic disorders and myocardial infarct sizes. In addition, OT increased cell viability, decreased cell apoptosis and the expressions of IL-18, IL-1ß, cleaved-caspase-1, NLRP3, and GSDMD following H/R. NLRP3 activator nigericin eliminated the beneficial effects of OT in H9c2 cells. Furthermore, OT also activated AMPK and decreased the expressions of pyroptosis-related proteins. Administration of AMPK inhibitor compound C blunted OT-induced AMPK phosphorylation and elevated the expressions of pyroptosis-related proteins in H9c2 cells subjected to H/R with hyperglycemia. OT alleviates myocardial I/R injury with hyperglycemia by inhibiting pyroptosis via AMPK/NLRP3 signaling pathway.


Assuntos
Hiperglicemia , Traumatismo por Reperfusão Miocárdica , Ocitocina , Piroptose , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glucose/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipóxia/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ocitocina/farmacologia , Piroptose/efeitos dos fármacos , Ratos , Reperfusão/efeitos adversos , Transdução de Sinais
4.
Biomed Pharmacother ; 154: 113572, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988428

RESUMO

The present study aimed to investigate whether dexmedetomidine (Dex) exerts cardioprotection effect through inhibiting ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) was induced in Sprague-Dawley rats in Langendorff preparation. The hemodynamic parameters were recorded. Triphenyltetrazolium chloride (TTC) staining was used to determine infarct size. In the in vitro study, the model of hypoxia/reoxygenation (HR) was established in H9c2 cells. Cell viability and apoptosis were detected using cell counting kit 8 (CCK-8), and AV/PI dual staining respectively. Lipid peroxidation as measured by the fluorescence of the fatty acid analog C11-BODIPY581/591 probe and intracellular ferrous iron levels were measured by fluorescence of Phen Green SK (PGSK) probe, whereas immunofluorescence and transmission electron microscopy were also used to examine ferroptosis. Protein levels were investigated by Western blot. The interactions of AMPK/GSK-3ß signaling with Nrf2 were also assessed through AMPK inhibition and GSK-3ß overexpression. Our findings indicated that Dex significantly alleviated myocardial infarction, improved heart function, and decreased HR-induced accumulation of Fe2+ and lipid peroxidation in cardiomyocytes. Dex significantly increased the expression levels of Nrf2, SLC7A11, and GPX4. However, inhibition of Nrf2 by ML385 blunted the protective effect of Dex in HR-treated H9c2 cells. Inhibition of AMPK with a specific inhibitor or siRNA decreased the expression levels of phosphorylation of GSK-3ß and Nrf2 induced by Dex. Overexpression of GSK-3ß resulted in lower levels of nuclear Nrf2, whereas depression of GSK-3ß enhanced expressions of nuclear Nrf2. In conclusion, Dex protects hearts against MIRI-induced ferroptosis via activation of Nrf2 through AMPK/GSK-3ß signaling pathway.


Assuntos
Dexmedetomidina , Ferroptose , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Proteínas Quinases Ativadas por AMP , Apoptose , Dexmedetomidina/farmacologia , Glicogênio Sintase Quinase 3 beta , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley
5.
Front Pharmacol ; 12: 766024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925023

RESUMO

Cardiac hypertrophy is caused by cardiac volume or pressure overload conditions and ultimately leads to contractile dysfunction and heart failure. Oxytocin (OT), an endocrine nonapeptide, has been identified as a cardiovascular homeostatic hormone with anti-hypertrophic effects. However, the underlying mechanism remains elusive. In this study, we aimed to investigate the role and mechanism of OT in cardiac hypertrophy. The rats with cardiac hypertrophy induced by isoproterenol (ISO) were treated with or without oxytocin. Cardiac functional parameters were analyzed by echocardiography. The changes in cell surface area were observed using wheat germ agglutinin (WGA) or immunofluorescence staining. The expressions of cardiac hypertrophy markers (B-Natriuretic Peptide, BNP and ß-myosin heavy chain, ß-MHC), long non-coding RNA Growth (LcRNA) Arrest-Specific transcript 5 (lncRNA GAS5), miR-375-3p, and Kruppel-like factor 4 (Klf4) were detected by qRT-PCR. KLF4 protein and PI3K/AKT pathway related proteins were detected by Western blot. The interactions among lncRNA GAS5, miR-375-3p, and Klf4 were verified by dual-luciferase reporter assays. The findings showed that OT significantly attenuated cardiac hypertrophy, increased expressions of lncRNA GAS5 and KLF4, and decreased miR-375-3p expression. In vitro studies demonstrated that either knock-down of lncRNA GAS5 or Klf4, or over-expression of miR-375-3p blunted the anti-hypertrophic effects of OT. Moreover, down-regulation of lncRNA GAS5 promoted the expression of miR-375-3p and inhibited KLF4 expression. Similarly, over-expression of miR-375-3p decreased the expression of KLF4. Dual-luciferase reporter assays validated that lncRNA GAS5 could sponge miR-375-3p and Klf4 was a direct target gene of miR-375-3p. In addition, OT could inactivate PI3K/AKT pathway. The functional rescue experiments further identified OT regulated PI3K/AKT pathway through lncRNA GAS5/miR-375-3p/KLF4 axis. In summary, our study demonstrates that OT ameliorates cardiac hypertrophy by inhibiting PI3K/AKT pathway via lncRNA GAS5/miR-375-3p/KLF4 axis.

6.
Biomed Pharmacother ; 141: 111853, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34237593

RESUMO

The degranulation of cardiac mast cells is associated with occurrence and development of myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine has a cardioprotective effect from I/R injury. The purpose of this study was to investigate whether dexmedetomidine preconditioning induced cardioprotection is related to suppression of degranulation of cardiac mast cell. Both in vivo and in vitro experimental results revealed that hemodynamic disorder, arrhythmia, infarct size, histopathological score, and mast cell degranulation were dramatically increased in I/R injury groups compared with non-I/R groups, and mastocyte secretagogue compound 48/80 aggravated these damages, but it can be improved by dexmedetomidine preconditioning. Similarly, compound 48/80 increased levels of cardiac troponin I (cTnI) and tryptase, cardiomyocytes apoptosis, and expression of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), and nuclear factor-kappa B p65 (NF-κB p65) in cardiac tissues induced by I/R injury, but it can be partially decreased by dexmedetomidine pretreatment. Compound 48/80 inhibited proliferation of H9C2(2-1) and RBL-2H3, exacerbated apoptosis of H9C2(2-1), and elevated levels of cTnI and tryptase, while both of which were abolished by dexmedetomidine pretreatment. Our data suggest that dexmedetomidine preconditioning alleviates the degranulation of mast cells and the apoptosis of cardiomyocytes caused by I/R injury, and inhibits the activation of inflammatory related factors HMGB1, TLR4, and NF-κB p65.


Assuntos
Cardiotônicos/farmacologia , Degranulação Celular/efeitos dos fármacos , Dexmedetomidina/farmacologia , Mastócitos/efeitos dos fármacos , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Arritmias Cardíacas/prevenção & controle , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Precondicionamento Isquêmico , Masculino , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/psicologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , p-Metoxi-N-metilfenetilamina/farmacologia
7.
Biomed Pharmacother ; 133: 110993, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33220608

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion (I/R) injury is a common cause of mortality. Cardiac miR-146a is emerging as a potent regulator of myocardial function. Dexmedetomidine preconditioning provides cardioprotective effects, of which mechanisms related to miR-146a-3p are unclear. METHODS: A myocardial I/R model in rats and a cellular anoxia/reoxygenation (A/R) model in H9C2 cells were established and preconditioned with dexmedetomidine or not. H9C2 cells were transfected with mimics, inhibitor, or negative controls of miR-146a-3p, and siRNAs of IRAK1 or TRAF6. Relative expressions of miR-146a-3p were determined by quantitative real-time polymerase chain reaction. The apoptosis rates and reactive oxygen species (ROS) levels in H9C2 cells were examined by flow cytometry. Protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, BCL-2, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), IκBα, and phosphorylated IκBα (p-IκBα) in H9C2 cells were detected by Western blot. RESULTS: Dexmedetomidine decreased myocardial infarction size and apoptosis rates of H9C2 cells. Dexmedetomidine upregulated expression of miR-146a-3p. Dexmedetomidine significantly decreased protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, and NF-κB p65, but increased expressions of BCL-2 in H9C2 cells. miR-146a-3p overexpression strengthened the anti-apoptotic effect induced by dexmedetomidine in H9C2 cells via decreasing protein levels of IRAK1, TRAF6, cleaved Caspase-3, BAX, NF-κB p65, p-NF-κB p65, and p-IκBα and increasing protein level of BCL-2. Downregulation of miR-146a-3p reversed the changes in these proteins in H9C2 cells. Expressions of NF-κB p65 and p-NF-κB p65 were further decreased following knockdown of IRAK1 or TRAF6. ROS emission was significantly increased after A/R, while significantly decreased following dexmedetomidine preconditioning in H9C2 cells transfected with siIRAK1 or siTRAF6. CONCLUSION: miR-146a-3p targeting IRAK1 and TRAF6 through inhibition of NF-κB signaling pathway and ROS emission is involved in cardioprotection induced by dexmedetomidine pretreatment.


Assuntos
Apoptose/efeitos dos fármacos , Dexmedetomidina/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , MicroRNAs/genética , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética
8.
Epigenomics ; 12(21): 1929-1947, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33245677

RESUMO

Diabetic cardiovascular diseases (DCVDs) are the most common complications of diabetes mellitus and are considered to be one of the most important threats to global health and an economic burden. Long noncoding RNA (lncRNA), circular RNA (circRNA), and miRNA are a novel group of noncoding RNAs that are involved in the regulation of various pathophysiological processes, including DCVDs. Interestingly, both lncRNA and circRNA can act as competing endogenous RNA of miRNA, thereby regulating the expression of the target mRNA by decoying or sponging the miRNA. In this review, we focus on the mechanistic, pathological and functional roles of lncRNA/circRNA-miRNA-mRNA networks in DCVDs and further discuss the potential implications for early detection, therapeutic intervention and prognostic evaluation.


Assuntos
Doenças Cardiovasculares/genética , Redes Reguladoras de Genes , MicroRNAs , RNA Circular , RNA Longo não Codificante , RNA Mensageiro , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Regulação da Expressão Gênica , Humanos , Prognóstico
10.
Peptides ; 130: 170333, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32497565

RESUMO

The cardioprotective effect of oxytocin (OT) has been well established. However, there are no related studies on the role of endothelia in oxytocin-induced cardioprotection. Endothelial dysfunction (ED) model was established by injection of 0.01 % Triton X-100 in the isolated rat heart. Oxytocin pretreatment was conducted at the end of stabilization for 40 min, followed by 30 min global ischemia and 60 min reperfusion to induce I/R injury. Coronary perfusion pressure, hemodynamics and arrhythmia severity scores were measured respectively. High-sensitivity cardiac troponin T (hs-cTnT) was evaluated by enzyme-linked immunosorbent assay. Infarct size was detected by triphenyltetrazolium chloride staining. The morphological changes in coronary endothelium were observed by scanning electron microscopy. Injection of 0.01 % Triton X-100 caused significant reduction of CPP induced by histamine and endothelium removal from scanning electron microscopy, but SNP had no significant effect. Oxytocin pretreatment showed significant recovery in LVDP, ±dp/dtmax, RPP and SI after reperfusion (P <  0.05). Additionally, I/R injury led to a rise of arrhythmia severity score, hs-cTnT and infarct size. No significant differences between ED-OT-I/R and OT-I/R groups were found in arrhythmia severity score, hs-cTnT, and infarct size (P >  0.05). I/R injury exacerbated the decrease in CPP and worsened the migration, deformation, and fracture of coronary endothelium, while oxytocin reversed these injuries. Despite the presence of endothelial damages, oxytocin partially alleviated I/R- and Triton-induced endothelial damages. The cardioprotective effects of oxytocin are independent of endothelial function in alleviating I/R injury and I/R-induced coronary endothelial dysfunction.


Assuntos
Cardiotônicos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ocitocina/farmacologia , Animais , Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Masculino , Miocárdio/patologia , Octoxinol/toxicidade , Técnicas de Cultura de Órgãos , Ratos Sprague-Dawley
11.
Biomed Pharmacother ; 128: 110358, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32526456

RESUMO

BACKGROUND: Oxytocin (OT) has shown a cardioprotective effect on myocardial ischemia/reperfusion injury (MIRI). This study aimed to investigate whether the cardioprotective effect of OT is associated with the inhibition of mast cell degranulation and inflammation. METHODS: The left anterior descending coronary artery of rats was ligated for 30 min and reperfused for 120 min to establish an ischemia and reperfusion (I/R) injury model. A preliminary experiment was conducted to evaluate the optimal dose of OT (0.01, 0.1, 1 µg/kg via intraperitoneal). The mast cell secretagogue compound 48/80 (C48/80) was used to promote the degranulation of mast cells with or without I/R injury, while rats were pretreated with OT to determine whether this compound suppresses mast cell degranulation. The expression of the inflammatory factors HMGB1 and NF-κB p65 was evaluated. A cell experiment was performed for verification. RESULTS: C48/80 (0.5 mg/kg, intravenous) increased mast cell degranulation and tryptase release compared with I/R-treated alone (27.12 ± 3.52 % vs. 16.57 ± 2.23 %; 8.34 ± 1.66 ng/mL vs. 3.63 ± 0.63 ng/mL), but these effects could be decreased by OT (0.1 µg/kg, intraperitoneal) preconditioning (19.29 ± 0.74 %; 5.37 ± 0.73 ng/mL). Besides that, hemodynamic disorders, arrhythmias, cardiac edema, infarct size, histopathological damage, and the levels of cTnI, HMGB1 and NF-κB p65 were significantly increased in I/R-treated group compared with corresponding observations in the control group, and C48/80 exacerbated these injuries, but pretreatment with OT could ameliorate these effects. Furthermore, C48/80 (10 µg/mL) inhibited the viability and promoted the apoptosis of H9C2(2-1) and RBL-2H3 cells, and increased the release of cTnI and tryptase, all of which were reversed by prophylactic OT (0.01 ng/mL) treatment. CONCLUSION: We concluded that OT pretreatment inhibits the degranulation of cardiac mast cells induced by I/R injury and downregulates the expression of the inflammatory factors HMGB1 and NF-κB p65.


Assuntos
Anti-Inflamatórios/farmacologia , Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Ocitocina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo , Troponina I/metabolismo
12.
Mol Biol Rep ; 47(5): 3629-3639, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32342432

RESUMO

Oxidative stress induced necroptosis is important in myocardial ischemia/reperfusion injury. Dexmedetomidine (Dex), an α2-adrenoceptor (α2-AR) agonist, has protective effect on oxidative stress induced cell apoptosis, but effects of Dex and Dex-mediated α2-AR activation on oxidant induced necroptosis was unclear. H9C2 cardiomyocytes were pre-treated with or without Dex and α2-AR antagonist yohimbine hydrochloride (YOH) before being exposed to H2O2 to induce oxidative cellular damage. Cell viability and lactate dehydrogenase (LDH) were detected by ELISA kits, protein expressions of Heme Oxygenase 1(HO-1), receptor interacting protein kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3) were observed by WB, and TUNEL was used to detected cell apoptosis. H2O2 significantly decreased cell viability and increased LDH release and necroptotic and apoptotic cell deaths (all p < 0.05, H2O2 vs. Control). Dex preconditioning alleviated these injuries induced by H2O2. Dex preconditioning significantly increased expression of protein HO-1 and decreased expressions of proteins RIPK1 and RIPK3 induced by H2O2, while all these protective effects of Dex were reversed by YOH (all p < 0.05, Dex + H2O2 vs. H2O2; and YOH + Dex + H2O2 vs. Dex + H2O2). However, YOH did not prevent this protective effect of Dex against H2O2 induced apoptosis (YOH + Dex + H2O2 vs. Dex + H2O2, p > 0.05). These findings indicated that Dex attenuates H2O2 induced cardiomyocyte necroptotic and apoptotic cell death respectively dependently and independently of α2-AR activation.


Assuntos
Dexmedetomidina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dexmedetomidina/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Necroptose/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Biomed Pharmacother ; 125: 110001, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32070878

RESUMO

Dexmedetomidine (Dex) has been reported to be cardioprotective. Differential expression of miR-208b-3p is associated with myocardial injury. But it is unknown that aberrant expression of miR-208b-3p is implicated in myocardial protection of Dex. Hypoxia/reoxygenation (HR) model was established in H9C2 cells. qRT-PCR was performed to detect expression levels of miR-208b-3p in H9C2 undergoing HR, Dex preconditioning, overexpression of miR-208b-3p or inhibition, and to assess expression of Med13 in H9C2 following knockdown of Med13 mRNA. CCK8 and, flow cytometry and Western blot were conducted respectively to examine viability, apoptosis rate and protein expressions of H9C2 subjected to a variety of treatments. Dex preconditioning reduced expression of miR-208b-3p and apoptosis of H9C2 cells caused by HR, while Dex preconditioning increased viability of H9C2. Dex preconditioning increased expression of Med13, which was reduced after knockdown of Med13 mRNA in H9C2. Overexpression of miR-208b-3p attenuated Dex exerted protective effects of myocardial cells, which was reversed by inhibition of miR-208b-3p. Increased expression of Med13 or/and decreased expression of miR-208b-3p decreased expression levels of Wnt/ß-catenin signaling pathway-related proteins (Wnt3a, Wnt5a and ß-catenin), while knockdown of Med13 mRNA or increased expression of miR-208b-3p increased the expression levels of those proteins. Dex protects H9C2 cells against HR injury through miR-208b-3p/Med13/Wnt/ß-catenin signaling pathway axis.


Assuntos
Dexmedetomidina/farmacologia , Complexo Mediador/genética , MicroRNAs/genética , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia
14.
Epigenomics ; 11(15): 1733-1748, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31701757

RESUMO

Emerging evidence has demonstrated that regulatory noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs) and miRNAs, play crucial roles in the initiation and progress of myocardial ischemia-reperfusion injury (MIRI), which is associated with autophagy, apoptosis and necrosis of cardiomyocytes, as well as oxidative stress, inflammation and mitochondrial dysfunction. LncRNAs serve as a precursor or host of miRNAs and directly/indirectly affecting miRNAs via competitive binding or sponge effects. Simultaneously, miRNAs post-transcriptionally regulate the expression of genes by targeting various mRNA sequences due to their imperfect pairing with mRNAs. This review summarizes the potential regulatory role of lncRNA-miRNA-mRNA axes in MIRI and related molecular mechanisms of cardiac disorders, also provides insight into the potential therapies for MIRI-induced diseases.


Assuntos
MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Apoptose/genética , Autofagia/genética , Redes Reguladoras de Genes/genética , Humanos
15.
Biomed Pharmacother ; 120: 109463, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541882

RESUMO

BACKGROUND: Dexmedetomidine is widely used for perioperative and ICU patients. microRNAs (miRNAs) function as regulators of gene expression. The aim of the study was to assay expression profiling of microRNA in rat hearts following administration of dexmedetomidine. METHODS: In this study 6 rats were randomly divided into two groups (n = 3): dexmedetomidine group and control group. The rats of dexmedetomidine group were intraperitoneally given dexmedetomidine in a dose of 100 µg/kg whereas the rats in control group were administered normal saline intraperitoneally. The hearts were excised 30 min after the administration of dexmedetomidine or normal saline under anesthesia. The samples were analyzed for differentially expressed microRNAs with Exiqon miRNA Array. The differentially expressed microRNAs were confirmed by using qRT-PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to find the target genes and signaling pathways of the aberrantly expressed miRNAs. RESULTS: Six microRNAs were identified to be significantly expressed, among of which, five microRNAs (miRNA-434-3p, miRNA-3596d, miRNA-496-5p, miRNA-7a-2-3p and miRNA-702-3p) were up-regulated and 1 microRNA (miRNA-208b-3p) down-regulated compared to those of control group. The aberrantly expressed microRNAs were further validated by Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). GO and KEGG analyses were used to identify target genes and the signaling pathways. CONCLUSIONS: The use of dexmedetomidine is associated with differentially expressed microRNAs which may be involved in cardioprotection following administration of dexmedetomidine.


Assuntos
Dexmedetomidina/farmacologia , Coração/efeitos dos fármacos , MicroRNAs/genética , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Masculino , Ratos , Ratos Sprague-Dawley
16.
Biomed Pharmacother ; 114: 108837, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30965239

RESUMO

BACKGROUND AND PURPOSES: Dexmedetomidine preconditioning (DP) can mimic pharmacological preconditioning and induce cardiac protection. There are controversies on the roles of coronary endothelia in cardioprotection of dexmedetomidine. Herein, we tested the hypothesis that protection of dexmedetomidine is not endothelial dependent in heart against myocardial ischemia/reperfusion (I/R) injury. METHODS: Langendorff-perfused rat hearts were pretreated by 60 mM of potassium to produce endothelial dysfunction (ED), then medicated with dexmedetomidine, and subsequently subjected to 30 min of global ischemia followed by 60 min of reperfusion. To investigate the cardioprotective effect of dexmedetomidine in heart with ED, isolated rat hearts were randomly divided into the following six groups: sham, I/R, DP, ED, ED + I/R, and ED + DP + I/R. Heart rates, left ventricular function, and coronary perfusion pressure were assessed for each heart. Infarct size was evaluated by triphenyltetrazolium chloride staining. High-sensitivity cardiac troponin T (hs-cTNT) of coronary flow perfusion was determined. RESULTS: After the isolated hearts with pretreatment of 60 mM of potassium chloride, diastolic function of coronary endothelia in performance of response to histamine was significantly decreased (P < 0.05). DP attenuated I/R-induced infarct size of the left ventricle (P < 0.05) and decreased hs-cTNT (P < 0.05). Additionally, left ventricular developed pressure, +dp/dtmax, and -dp/dtmax were elevated in rat hearts pretreated with dexmedetomidine. Furthermore, dexmedetomidine-mediated cardiac protection against I/R injury was still remained in isolated hearts with coronary ED. CONCLUSION: Continuous perfusion of 60 mM of potassium for 10 min can produce coronary ED in isolated rat hearts. Dexmedetomidine maintains its protective function against I/R injury in heart with coronary ED. Myocardial protection of dexmedetomidine is non-endothelial function dependent in alleviating I/R injury.


Assuntos
Dexmedetomidina/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Diástole/efeitos dos fármacos , Células Endoteliais , Frequência Cardíaca/efeitos dos fármacos , Precondicionamento Isquêmico/métodos , Masculino , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
17.
Biomed Pharmacother ; 115: 108894, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31026731

RESUMO

BACKGROUND: Dexmedetomidine (Dex) can confer cardioprotective effects against ischemia/reperfusion (I/R) injury. While there are no studies addressing cardioprotection of Dex via regulation of microRNAs. The purpose of this study was to examine the roles and mechanisms of microRNA in cardioprotection of dexmedetomidine. METHODS: Rat heart Langendorff preparation was established. We assayed expression profiling of miRNAs in perfused rat hearts and predicted Target genes using MiRanda, MiRDB, and TargetScan. Oxide stress (H2O2) was employed to simulate I/R injury. miR-665 mimic, inhibitor, and siRNA of AK1 and Cnr2 were transfected to H9C2. The real-time quantitative polymerase chain reaction was used to quantify miR-665 and Ak1 and Cnr2 mRNA. The apoptosis of the cells was examined. The expression levels of cleaved caspase-3, Bcl-2, Bax, AK1, and Cnr2 were detected by Western blot. The combination between miR-665 and the 3'-untranslated region of AK1 and Cnr2 was validated by a luciferase reporter assay. RESULTS: Dex precondition down-regulated miR-665 expression in hearts compared to I/R group. Dex reduced miR-665 expression and apoptosis increased by oxide stress. However, up-regulation of miR-665 exacerbated the changes caused by oxide stress and inhibited the effects of Dex. Down-regulation of miR-665 also reduced apoptosis, but inhibition of AK1 and Cnr2 aggravated apoptosis. The luciferase reporter assay indicated that miR-665 could down-regulate expression levels of AK1 and Cnr2. CONCLUSIONS: Dex precondition confers hearts protective effect against I/R injury by down-regulating expression of miR-665 and up-regulating expression of AK1 and Cnr2.


Assuntos
Adenilato Quinase/metabolismo , Dexmedetomidina/farmacologia , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Adenilato Quinase/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , L-Lactato Desidrogenase/metabolismo , MicroRNAs/genética , Oxigênio , Ratos , Receptor CB2 de Canabinoide/genética
18.
Cell Physiol Biochem ; 50(2): 552-568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308506

RESUMO

BACKGROUND/AIMS: Circulating miRNAs could serve as biomarkers for diagnosis or prognosis of heart diseases and cerebrovascular diseases. Dexmedetomidine has protective effects in various organs. The effects of dexmedetomidine on circulating miRNAs remain unknown. Here, we investigated differentially expressed miRNA and to predict the target genes of the miRNA in patients receiving dexmedetomidine. METHODS: The expression levels of circulating miRNAs of 3 patients were determined through high through-put miRNA sequencing technology. Target genes of the identified differentially expressed miRNAs were predicted using TargetScan 7.1 and miRDB v.5. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to conduct functional annotation and pathway enrichment analysis of target genes respectively. RESULTS: Twelve differentially expressed miRNAs were identified. Five miRNAs were upregulated (hsa-miR-4508, hsa-miR-novel-chr8_87373, hsa-miR-30a-3p, hsa-miR-novel-chr16_26099, hsa-miR-4306) and seven miRNAs (hsa-miR-744-5p, hsa-miR-320a, hsa-miR-novel-chr9_90035, hsa-miR-101-3p, hsa-miR-150-5p, hsa-miR-342-3p, and hsa-miR-140-3p) were downregulated after administration of dexmedetomidine in the subjects. The target genes and pathways related to the differentially expressed miRNAs were predicted and analyzed. CONCLUSION: The differentially expressed miRNAs may be involved in the mechanisms of action of dexmedetomidine. Specific miRNAs, such as hsa-miR-101-3p, hsa-miR-150-5p and hsa-miR-140-3p, are new potential targets for further functional studies of dexmedetomidine.


Assuntos
MicroRNA Circulante/sangue , Dexmedetomidina/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Adulto , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/cirurgia , Análise por Conglomerados , Regulação para Baixo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Análise de Sequência de RNA , Transdução de Sinais/genética , Regulação para Cima
20.
Cell Physiol Biochem ; 46(6): 2284-2296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734191

RESUMO

BACKGROUND/AIMS: Chronic heavy alcohol consumption may result in alcoholic cardiomyopathy. This study was designed to screen differentially expressed microRNAs and circular RNAs in heart tissue of mice with alcoholic cardiomyopathy to reveal the underlying molecular mechanism. METHODS: Having established a murine alcoholic cardiomyopathy model, we screened differentially expressed microRNAs and circular RNAs in three heart samples from the alcohol-treated and control groups by high-throughput microarray analysis. We analyzed the function and biological signaling pathways of differentially expressed non-coding RNAs closely related to alcoholic cardiomyopathy using bioinformatics software to identify some mRNAs and their biological signaling pathways closely related to alcoholic cardiomyopathy. RESULTS: Nineteen microRNAs and 265 circular RNAs were differentially expressed in the alcohol-treated group compared with the control group. After analyzing gene function and signaling pathways by bioinformatics software, we found that the differentially expressed mRNAs were associated with carbohydrate metabolism. CONCLUSIONS: Chronic alcohol consumption can change the non-coding RNA profile of heart tissue, which is closely related to the pathological mechanisms of alcoholic cardiomyopathy.


Assuntos
Cardiomiopatia Alcoólica/genética , Cardiomiopatia Alcoólica/patologia , MicroRNAs/genética , Miocárdio/patologia , RNA/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Miocárdio/metabolismo , RNA Circular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...