Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765593

RESUMO

Affinity-based organic electrochemical transistor (OECT) sensors offer an attractive approach to point-of-care diagnostics due to their extreme sensitivity and easy operation; however, their application in the real world is frequently challenged by the poor storage stability of antibody proteins and the interference from biofouling in complex biofluids. In this work, we developed an antibody-free and antifouling OECT biosensor to detect C-reactive protein (CRP) at ultra-high specificity and sensitivity. The key to this novel biosensor is the gate coated by phosphorylcholine-functionalized poly (3,4-ethylene dioxythiophene) (PEDOT-PC), which possesses large capacitance and low impedance, prevents biofouling of bovine serum albumin (BSA) and the fetal bovine serum (FBS), and interacts specifically with CRP molecules in the presence of calcium ions. This PEDOT-PC-gated OECT biosensor demonstrated exceptional sensitivity when detecting the CRP molecules at 10 pg/mL, while significantly depressing the signal from the nonspecific binding. This indicates that this biosensor could detect the CRP molecules directly without nonspecific binding blocking, the usual process for the earlier transistor sensors before detection. We envision that this PEDOT-PC-gated OECT biosensor platform may offer a potentially valuable tool for point-of-care diagnostics as it alleviates concerns about poor antibody stability and BSA blocking inconstancy.

2.
Bioact Mater ; 26: 24-51, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36875055

RESUMO

Conducting polymers offer attractive mixed ionic-electronic conductivity, tunable interfacial barrier with metal, tissue matchable softness, and versatile chemical functionalization, making them robust to bridge the gap between brain tissue and electronic circuits. This review focuses on chemically revised conducting polymers, combined with their superior and controllable electrochemical performance, to fabricate long-term bioelectronic implants, addressing chronic immune responses, weak neuron attraction, and long-term electrocommunication instability challenges. Moreover, the promising progress of zwitterionic conducting polymers in bioelectronic implants (≥4 weeks stable implantation) is highlighted, followed by a comment on their current evolution toward selective neural coupling and reimplantable function. Finally, a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.

3.
J Mater Chem B ; 9(11): 2717-2726, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33683271

RESUMO

Strong nonspecific protein/cell adhesion on conducting polymer (CP)-based bioelectronic devices can cause an increase in the impedance or the malfunction of the devices. Incorporating oligo(ethylene glycol) or zwitterionic functionalities with CPs has demonstrated superior performance in the reduction of nonspecific adhesion. However, there is no report on the evaluation of the antifouling stability of oligo(ethylene glycol) and zwitterion-functionalized CPs under electrical stimulation as a simulation of the real situation of device operation. Moreover, there is a lack of understanding of the correlation between the molecular structure of antifouling CPs and the antifouling and electrochemical stabilities of the CP-based electrodes. To address the aforementioned issue, we fabricated a platform with antifouling poly(3,4-ethylenedioxythiophene) (PEDOT) featuring tri(ethylene glycol), tetra(ethylene glycol), sulfobetaine, or phosphorylcholine (PEDOT-PC) to evaluate the stability of the antifouling/electrochemical properties of antifouling PEDOTs before and after electrical stimulation. The results reveal that the PEDOT-PC electrode not only exhibits good electrochemical stability, low impedance, and small voltage excursion, but also shows excellent resistance toward proteins and HAPI microglial cells, as a cell model of inflammation, after the electrical stimulation. The stable antifouling/electrochemical properties of zwitterionic PEDOT-PC may aid its diverse applications in bioelectronic devices in the future.


Assuntos
Incrustação Biológica/prevenção & controle , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Técnicas Eletroquímicas , Polímeros/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Células Cultivadas , Camundongos , Microeletrodos , Estrutura Molecular , Células NIH 3T3 , Imagem Óptica , Polimerização , Polímeros/síntese química , Polímeros/química , Ratos
4.
Nat Commun ; 11(1): 1107, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107380

RESUMO

The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. To successfully integrate with the soft tissues of the body (eg. skin), the material must possess many of the same properties including compliance, toughness, elasticity, and tear resistance. In this work, we prepare mechanically and biologically skin-like materials (PSeD-U elastomers) by designing a unique physical and covalent hybrid crosslinking structure. The introduction of an optimal amount of hydrogen bonds significantly strengthens the resultant elastomers with 11 times the toughness and 3 times the strength of covalent crosslinked PSeD elastomers, while maintaining a low modulus. Besides, the PSeD-U elastomers show nonlinear mechanical behavior similar to skins. Furthermore, PSeD-U elastomers demonstrate the cytocompatibility and biodegradability to achieve better integration with tissues. Finally, piezocapacitive pressure sensors are fabricated with high pressure sensitivity and rapid response to demonstrate the potential use of PSeD-U elastomers in bio-integrated electronics.


Assuntos
Materiais Biomiméticos/química , Elastômeros/química , Equipamentos e Provisões Elétricas , Biomimética/métodos , Reagentes de Ligações Cruzadas/química , Elasticidade , Isocianatos/química , Teste de Materiais , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinonas/química , Fenômenos Fisiológicos da Pele
5.
ACS Appl Mater Interfaces ; 12(10): 12362-12372, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32057222

RESUMO

Zwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) is an effective electronic material for bioelectronics because it exhibits efficient electrical trade-off and diminishes immune response. To promote the use of zwitterionic PEDOTs in bioelectronic devices, especially for cell alignment control and close electrocoupling, features such as tunable interaction of PEDOTs with proteins/cells and spatially modulating cell behavior are required. However, there is a lack of reliable methods to assemble zwitterionic EDOTs with other functionalized EDOT materials, having different polarities and oxidation potentials, to prepare PEDOTs with the aforementioned surface properties. In this study, we have developed a surfactant-assisted electropolymerization to assemble phosphorylcholine (PC)-functionalized EDOT with other functionalized EDOTs. By adjusting compositions, the interaction of PEDOT copolymers with proteins/cells can be finely tuned; the composition adjustment has an ignorable influence on the impedance of the copolymers. We also demonstrate that the cell-repulsive force generated from PC can spatially guide the neurite outgrowth to form a neuron network at single-cell resolution and greatly enhance the neurite outgrowth by 179%, which is significantly more distinctive than the reported topography effect. We expect that the derived tunable protein/cell interaction and the PC-induced repulsive guidance for the neurite outgrowth can make low-impedance zwitterionic PEDOTs more useful in bioelectronics.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Linhagem Celular , Impedância Elétrica , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...