Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(8): 6854-6868, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252679

RESUMO

The Rift Valley fever virus (RVFV) is an emerging high-priority pathogen endemic in Africa with pandemic potential. There is no specific treatment or approved antiviral drugs for the RVFV. We previously developed a cell-based high-throughput assay to screen small molecules targeting the RVFV and identified a potential effective antiviral compound (1-N-(2-(biphenyl-4-yloxy)ethyl)propane-1,3-diamine) as a lead compound. Here, we investigated how structural modifications of the lead compound affected the biological properties and the antiviral effect against the RVFV. We found that the length of the 2-(3-aminopropylamino)ethyl chain of the compound was important for the compound to retain its antiviral activity. The antiviral activity was similar when the 2-(3-aminopropylamino)ethyl chain was replaced with a butyl piperazine chain. However, we could improve the cytotoxicity profile of the lead compound by changing the phenyl piperazine linker from the para-position (compound 9a) to the meta-position (compound 13a). Results from time-of-addition studies suggested that compound 13a might be active during virus post-entry and/or the replication phase of the virus life cycle and seemed to affect the K+ channel. The modifications improved the properties of our lead compound, and our data suggest that 13a is a promising candidate to evaluate further as a therapeutic agent for RVFV infection.

2.
Autophagy ; 18(7): 1486-1502, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34740308

RESUMO

The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are the main proteolytic systems in eukaryotic cells for preserving protein homeostasis, i.e., proteostasis. By facilitating the timely destruction of aberrant proteins, these complementary pathways keep the intracellular environment free of inherently toxic protein aggregates. Chemical interference with the UPS or autophagy has emerged as a viable strategy for therapeutically targeting malignant cells which, owing to their hyperactive state, heavily rely on the sanitizing activity of these proteolytic systems. Here, we report on the discovery of CBK79, a novel compound that impairs both protein degradation by the UPS and autophagy. While CBK79 was identified in a high-content screen for drug-like molecules that inhibit the UPS, subsequent analysis revealed that this compound also compromises autophagic degradation of long-lived proteins. We show that CBK79 induces non-canonical lipidation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 beta) that requires ATG16L1 but is independent of the ULK1 (unc-51 like autophagy activating kinase 1) and class III phosphatidylinositol 3-kinase (PtdIns3K) complexes. Thermal preconditioning of cells prevented CBK79-induced UPS impairment but failed to restore autophagy, indicating that activation of stress responses does not allow cells to bypass the inhibitory effect of CBK79 on autophagy. The identification of a small molecule that simultaneously impairs the two main proteolytic systems for protein quality control provides a starting point for the development of a novel class of proteostasis-targeting drugs.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
3.
ACS Chem Biol ; 15(10): 2683-2691, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32845119

RESUMO

Coxsackievirus A24 variant (CVA24v) and human adenovirus 37 (HAdV-37) are leading causative agents of the severe and highly contagious ocular infections acute hemorrhagic conjunctivitis and epidemic keratoconjunctivitis, respectively. Currently, neither vaccines nor antiviral agents are available for treating these diseases, which affect millions of individuals worldwide. CVA24v and HAdV-37 utilize sialic acid as attachment receptors facilitating entry into host cells. Previously, we and others have shown that derivatives based on sialic acid are effective in preventing HAdV-37 binding and infection of cells. Here, we designed and synthesized novel pentavalent sialic acid conjugates and studied their inhibitory effect against CVA24v and HAdV-37 binding and infection of human corneal epithelial cells. The pentavalent conjugates are the first reported inhibitors of CVA24v infection and proved efficient in blocking HAdV-37 binding. Taken together, the pentavalent conjugates presented here form a basis for the development of general inhibitors of these highly contagious ocular pathogens.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Enterovirus Humano C/efeitos dos fármacos , Ácidos Siálicos/farmacologia , Adenovírus Humanos/química , Sítios de Ligação , Enterovirus Humano C/química , Humanos , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
4.
J Med Chem ; 63(8): 3915-3934, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32212728

RESUMO

Human dihydroorotate dehydrogenase (DHODH), an enzyme in the de novo pyrimidine synthesis pathway, is a target for the treatment of rheumatoid arthritis and multiple sclerosis and is re-emerging as an attractive target for cancer therapy. Here we describe the optimization of recently identified tetrahydroindazoles (HZ) as DHODH inhibitors. Several of the HZ analogues synthesized in this study are highly potent inhibitors of DHODH in an enzymatic assay, while also inhibiting cancer cell growth and viability and activating p53-dependent transcription factor activity in a reporter cell assay. Furthermore, we demonstrate the specificity of the compounds toward the de novo pyrimidine synthesis pathway through supplementation with an excess of uridine. We also show that induction of the DNA damage marker γ-H2AX after DHODH inhibition is preventable by cotreatment with the pan-caspase inhibitor Z-VAD-FMK. Additional solubility and in vitro metabolic stability profiling revealed compound 51 as a favorable candidate for preclinical efficacy studies.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Indazóis/química , Indazóis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Di-Hidro-Orotato Desidrogenase , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indazóis/farmacologia , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo
5.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164287

RESUMO

In recent years, as the mechanical structure of humanoid robots increasingly resembles the human form, research on pedestrian navigation technology has become of great significance for the development of humanoid robot navigation systems. To solve the problem that the wearable inertial navigation system based on micro-inertial measurement units (MIMUs) installed on feet cannot effectively realize its positioning function when the body movement is too drastic to be measured correctly by commercial grade inertial sensors, a pedestrian navigation method based on construction of a virtual inertial measurement unit (VIMU) and gait feature assistance is proposed. The inertial data from different positions of pedestrians' lower limbs are collected synchronously via actual IMUs as training samples. The nonlinear mapping relationship between inertial information from the human foot and leg is established by a visual geometry group-long short term memory (VGG-LSTM) neural network model, based on which the foot VIMU and virtual inertial navigation system (VINS) are constructed. The VINS experimental results show that, combined with zero-velocity update (ZUPT), the integrated method of error modification proposed in this paper can effectively reduce the accumulation of positioning errors in situations where the gait type exceeds the measurement range of the inertial sensors. The positioning performance of the proposed method is more accurate and stable in complex gait types than that merely using ZUPT.


Assuntos
Pé/fisiologia , Marcha , Aprendizado de Máquina , Monitorização Ambulatorial/instrumentação , Pedestres , Aceleração , Algoritmos , Fenômenos Biomecânicos , Humanos , Monitorização Ambulatorial/métodos , Movimento (Física) , Redes Neurais de Computação , Reprodutibilidade dos Testes , Robótica , Caminhada , Dispositivos Eletrônicos Vestíveis
6.
Proc Natl Acad Sci U S A ; 116(42): 21291-21301, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570580

RESUMO

Vacuoles are essential organelles in plants, playing crucial roles, such as cellular material degradation, ion and metabolite storage, and turgor maintenance. Vacuoles receive material via the endocytic, secretory, and autophagic pathways. Membrane fusion is the last step during which prevacuolar compartments (PVCs) and autophagosomes fuse with the vacuole membrane (tonoplast) to deliver cargoes. Protein components of the canonical intracellular fusion machinery that are conserved across organisms, including Arabidopsis thaliana, include complexes, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), that catalyze membrane fusion, and homotypic fusion and vacuole protein sorting (HOPS), that serve as adaptors which tether cargo vesicles to target membranes for fusion under the regulation of RAB-GTPases. The mechanisms regulating the recruitment and assembly of tethering complexes are not well-understood, especially the role of RABs in this dynamic regulation. Here, we report the identification of the small synthetic molecule Endosidin17 (ES17), which interferes with synthetic, endocytic, and autophagic traffic by impairing the fusion of late endosome compartments with the tonoplast. Multiple independent target identification techniques revealed that ES17 targets the VPS35 subunit of the retromer tethering complex, preventing its normal interaction with the Arabidopsis RAB7 homolog RABG3f. ES17 interference with VPS35-RABG3f interaction prevents the retromer complex to endosome anchoring, resulting in retention of RABG3f. Using multiple approaches, we show that VPS35-RABG3f-GTP interaction is necessary to trigger downstream events like HOPS complex assembly and fusion of late compartments with the tonoplast. Overall, our results support a role for the interaction of RABG3f-VPS35 as a checkpoint in the control of traffic toward the vacuole.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fusão de Membrana/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Proteínas SNARE/metabolismo
7.
Micromachines (Basel) ; 10(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374815

RESUMO

Aiming at the low-cost, wide-range, and accurate measurement requirement for Microelectromechanical System (MEMS) Inertial Measurement Unit (IMU) on a multi-rotor Unmanned Aerial Vehicle (UAV), the paper designs a heterogeneous parallel redundancy configuration scheme. In redundant MEMS IMUs, a high-cost and small-range MEMS gyroscope is combined with low-cost and large-range MEMS gyroscopes. Then, an adaptive data fusion method of redundant MEMS gyroscopes is proposed. By the designed experiments based on the simulation data and the sensor measurement data, the proposed method has been proved that it can effectively improve the angular rate measurement performance of the multi-rotor UAV and broaden the angular rate measurement range on the basis of saving the configuration cost and volume of the micro IMU.

8.
SLAS Discov ; 23(8): 815-822, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29630847

RESUMO

Acetaldehyde dehydrogenase (AdhE) is a bifunctional acetaldehyde-coenzyme A (CoA) dehydrogenase and alcohol dehydrogenase involved in anaerobic metabolism in gram-negative bacteria. This enzyme was recently found to be a key regulator of the type three secretion (T3S) system in Escherichia coli. AdhE inhibitors can be used as tools to study bacterial virulence and a starting point for discovery of novel antibacterial agents. We developed a robust enzymatic assay, based on the acetaldehyde-CoA dehydrogenase activity of AdhE using both absorption and fluorescence detection models (Z' > 0.7). This assay was used to screen ~11,000 small molecules in 384-well format that resulted in three hits that were confirmed by resynthesis and validation. All three compounds are noncompetitive with respect to acetaldehyde and display a clear dose-response effect with hill slopes of 1-2. These new inhibitors will be used as chemical tools to study the interplay between metabolism and virulence and the role of AdhE in T3S regulation in gram-negative bacteria, and as starting points for the development of novel antibacterial agents.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Aldeído Oxirredutases/antagonistas & inibidores , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Escherichia coli Êntero-Hemorrágica/enzimologia , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Antibacterianos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli Êntero-Hemorrágica/genética , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Fluxo de Trabalho
9.
Eur J Med Chem ; 103: 191-209, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26355531

RESUMO

The risk of cardiovascular events increases in individuals with elevated plasma triglyceride (TG) levels, therefore advocating the need for efficient TG-lowering drugs. In the blood circulation, TG levels are regulated by lipoprotein lipase (LPL), an unstable enzyme that is only active as a non-covalently associated homodimer. We recently reported on a N-phenylphthalimide derivative (1) that stabilizes LPL in vitro, and moderately lowers triglycerides in vivo (Biochem. Biophys. Res. Commun.2014, 450, 1063). Herein, we establish structure-activity relationships of 51 N-phenylphthalimide analogs of the screening hit 1. In vitro evaluation highlighted that modifications on the phthalimide moiety were not tolerated and that lipophilic substituents on the central phenyl ring were functionally essential. The substitution pattern on the central phenyl ring also proved important to stabilize LPL. However, in vitro testing demonstrated rapid degradation of the phthalimide fragment in plasma which was addressed by replacing the phthalimide scaffold with other heterocyclic fragments. The in vitro potency was retained or improved and substance 80 proved stable in plasma and efficiently lowered plasma TGs in vivo.


Assuntos
Lipase Lipoproteica/metabolismo , Ftalimidas/farmacologia , Triglicerídeos/sangue , Animais , Células CACO-2 , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ftalimidas/química , Ftalimidas/metabolismo , Relação Estrutura-Atividade
10.
Org Biomol Chem ; 13(35): 9194-205, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26177934

RESUMO

Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects.


Assuntos
Adenoviridae/efeitos dos fármacos , Adenoviridae/fisiologia , Córnea/citologia , Células Epiteliais/virologia , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacologia , Triazóis/química , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Química Click , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/síntese química , Coelhos
11.
J Comput Aided Mol Des ; 29(3): 199-215, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25351962

RESUMO

Scientific disciplines such as medicinal- and environmental chemistry, pharmacology, and toxicology deal with the questions related to the effects small organic compounds exhort on biological targets and the compounds' physicochemical properties responsible for these effects. A common strategy in this endeavor is to establish structure-activity relationships (SARs). The aim of this work was to illustrate benefits of performing a statistical molecular design (SMD) and proper statistical analysis of the molecules' properties before SAR and quantitative structure-activity relationship (QSAR) analysis. Our SMD followed by synthesis yielded a set of inhibitors of the enzyme acetylcholinesterase (AChE) that had very few inherent dependencies between the substructures in the molecules. If such dependencies exist, they cause severe errors in SAR interpretation and predictions by QSAR-models, and leave a set of molecules less suitable for future decision-making. In our study, SAR- and QSAR models could show which molecular sub-structures and physicochemical features that were advantageous for the AChE inhibition. Finally, the QSAR model was used for the prediction of the inhibition of AChE by an external prediction set of molecules. The accuracy of these predictions was asserted by statistical significance tests and by comparisons to simple but relevant reference models.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Modelos Estatísticos , Relação Quantitativa Estrutura-Atividade , Acetilcolinesterase/metabolismo , Análise de Variância , Técnicas de Química Sintética , Inibidores da Colinesterase/síntese química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
12.
J Med Chem ; 56(19): 7615-24, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23984975

RESUMO

The molecular interactions between the enzyme acetylcholinesterase (AChE) and two compound classes consisting of N-[2-(diethylamino)ethyl]benzenesulfonamides and N-[2-(diethylamino)ethyl]benzenemethanesulfonamides have been investigated using organic synthesis, enzymatic assays, X-ray crystallography, and thermodynamic profiling. The inhibitors' aromatic properties were varied to establish structure-activity relationships (SAR) between the inhibitors and the peripheral anionic site (PAS) of AChE. The two structurally similar compound classes proved to have distinctly divergent SARs in terms of their inhibition capacity of AChE. Eight X-ray structures revealed that the two sets have different conformations in PAS. Furthermore, thermodynamic profiles of the binding between compounds and AChE revealed class-dependent differences of the entropy/enthalpy contributions to the free energy of binding. Further development of the entropy-favored compound class resulted in the synthesis of the most potent inhibitor and an extension beyond the established SARs. The divergent SARs will be utilized to develop reversible inhibitors of AChE into reactivators of nerve agent-inhibited AChE.


Assuntos
Acetilcolinesterase/química , Derivados de Benzeno/química , Inibidores da Colinesterase/química , Naftalenos/química , Sulfonamidas/química , Animais , Derivados de Benzeno/síntese química , Sítios de Ligação , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Inibidores da Colinesterase/síntese química , Cristalografia por Raios X , Ensaios Enzimáticos , Reativadores Enzimáticos/química , Hidrólise , Camundongos , Estrutura Molecular , Naftalenos/síntese química , Ligação Proteica , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Termodinâmica
15.
Molecules ; 15(8): 5708-20, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20724960

RESUMO

The 2-[(4-fluorophenyl)sulfonyl]ethoxy carbonyl (Fsec) group for protection of hydroxyl groups has been designed, synthesized, and evaluated. Fsec-Cl was readily prepared in 91% yield over three steps and subsequently used to protect 4-fluorobenzyl alcohol in high yield. The Fsec group was cleaved from the resulting model compound under mild basic conditions e.g., 20% piperidine in DMF and was stable under acidic conditions, e.g., neat acetic acid. The Fsec group was used to protect the unreactive 4-OH in a galactose building block that was later used in the synthesis of 6-aminohexyl galabioside.


Assuntos
Carboidratos/química , Hidrocarbonetos Fluorados/síntese química , Fenóis/síntese química , Configuração de Carboidratos , Galactose/química , Glicosilação , Halogenação , Hidrocarbonetos Fluorados/química , Espectroscopia de Ressonância Magnética , Fenóis/química
16.
Org Biomol Chem ; 8(2): 326-30, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20066265

RESUMO

An efficient and convenient approach to construct C-C bonds at the 2-position of azoles via Cu(OAc)(2)/air mediated oxidative homo- and cross-coupling reaction was reported. The corresponding products were obtained in good to excellent yield.

17.
J Med Chem ; 52(12): 3666-78, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19456100

RESUMO

The adenovirus serotype Ad37 binds to and infects human corneal epithelial (HCE) cells through attachment to cellular glycoproteins carrying terminal sialic acids. By use of the crystallographic structure of the sialic acid-interacting domain of the Ad37 fiber protein in complex with sialyllactose, a set of N-acyl modified sialic acids were designed to improve binding affinity through increased hydrophobic interactions. These N-acyl modified sialic acids and their corresponding multivalent human serum albumin (HSA) conjugates were synthesized and tested in Ad37 cell binding and cell infectivity assays. Compounds bearing small substituents were as effective inhibitors as sialic acid. X-ray crystallography and overlays with the Ad37-sialyllactose complex showed that the N-acyl modified sialic acids were positioned in the same orientation as sialic acid. Their multivalent counterparts achieved a strong multivalency effect and were more effective to prevent infection than the monomers. Unfortunately, they were less active as inhibitors than multivalent sialic acid.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Desenho de Fármacos , Ceratoconjuntivite/epidemiologia , Ceratoconjuntivite/virologia , Ácidos Siálicos/síntese química , Ácidos Siálicos/farmacologia , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Albumina Sérica/química , Ácidos Siálicos/química , Relação Estrutura-Atividade
18.
J Pept Sci ; 15(4): 264-71, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19235188

RESUMO

N-[1-(4-(4-fluorophenyl)-2,6-dioxocyclohexylidene)ethyl] (Fde) protected amino acids have been prepared and applied in solid-phase peptide synthesis monitored by gel-phase (19)F NMR spectroscopy. The Fde protective group could be cleaved with 2% hydrazine or 5% hydroxylamine solution in DMF as determined with gel-phase (19)F NMR spectroscopy. The dipeptide Ac-L-Val-L-Val-NH(2) 12 was constructed using Fde-L-Val-OH and no noticeable racemization took place during the amino acid coupling with N,N'-diisopropylcarbodiimide and 1-hydroxy-7-azabenzotriazole or Fde deblocking. To extend the scope of Fde protection, the hydrophobic nonapeptide LLLLTVLTV from the signal sequence of mucin MUC1 was successfully prepared using Fde-L-Leu-OH at diagnostic positions.


Assuntos
Oligopeptídeos/síntese química , Aminoácidos/química , Flúor , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligopeptídeos/química
19.
Org Lett ; 10(17): 3899-902, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18665603

RESUMO

2,3-Dihydro-1,4-benzodioxins can be prepared in a tandem one-pot procedure by reaction of o-iodophenols with epoxides catalyzed by Cu2O/1,10-phenanthroline/Cs2CO3 system. The reaction is suggested to occur via a novel ring-opening/coupling mechanism, giving moderate to good yields. Moreover, both aryl and aliphatic epoxides are tolerated under these conditions.


Assuntos
Dioxinas/síntese química , Catálise , Cobre/química , Ciclização , Compostos de Epóxi/química , Óxidos/química , Fenantrolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...