Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Hepatobiliary Surg Nutr ; 13(3): 472-493, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38911201

RESUMO

Background and Objective: Immune checkpoint inhibitor (ICI)-based therapy has achieved impressive success in various cancer types. Several ICIs have been unprecedentedly approved as the treatment regimens for advanced hepatocellular carcinoma (HCC) in recent decade. Meanwhile, numerous clinical trials are being performed to exploit more ICIs into initially unresectable HCC and postoperative HCC to expectantly induce adequate tumor downstaging for further resection or implement adjuvant treatment for relapse-free survival, respectively. In this review, we aim to summarize some pragmatic histomorphologic, immunohistochemical, and molecular pathologic parameters which promisingly indicate the response of neoadjuvant/conversion ICI-related therapy and predict the efficacy of adjuvant/therapeutic ICI-related therapy for HCC. Methods: We searched PubMed using the terms hepatocellular carcinoma, immunotherapy, immune checkpoint inhibitor, immune checkpoint blockade, conversion therapy, neoadjuvant therapy, adjuvant therapy, biomarker, pathologic evaluation, pathologic assessment till February 2023. Key Content and Findings: Although there is no consensus regarding the pathologic evaluation of relevant HCC specimens, it is encouraging that a few of studies have concentrated on this field, and moreover, the methods and parameters noted on other cancer types are also worthy of reference. For the pathologic assessment of HCC specimens underwent immunotherapy, a suitable sampling scheme, identifying immunotherapy-related pathologic response, and quantification of pathologic response rate should be emphasized. For the patients of HCC who are scheduled to receive immunotherapy, tumor-infiltrating lymphocyte, intratumoral tertiary lymphoid structure, programmed cell death ligand 1, Wnt/ß-catenin, microsatellite instability and mismatch repair, tumor mutational burden and tumor neoantigen, as well as some other signaling pathways are the potential predictive biomarkers of treatment response of ICI. Conclusions: The management of HCC in the era of immunotherapy arises a brand-new pathological challenge that is to provide an immunotherapy-related diagnostic report. Albeit many related researches are preclinical or insufficient, they may tremendously alter the immunotherapy strategy of HCC in future.

2.
Adv Sci (Weinh) ; 11(23): e2401861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569464

RESUMO

Hypergolic propellants rely on fuel and oxidizer that spontaneously ignite upon contact, which fulfill a wide variety of mission roles in launch vehicles and spacecraft. Energy-rich carboranes are promising hypergolic fuels, but triggering their energy release is quite difficult because of their ultrastable aromatic cage structure. To steer the development of carborane-based high-performance hypergolic material, carboranylthiolated compounds integrated with atomically precise copper clusters are presented, yielding two distinct isomers, Cu14B-S and Cu14C-S, both possessing similar ligands and core structures. With the migration of thiolate groups from carbon atoms to boron atoms, the ignition delay (ID) time shortened from 6870 to 3 ms when contacted with environmentally benign oxidizer high-test peroxide (HTP, with a H2O2 concentration of 90%). The extraordinarily short ignition ID time of Cu14B-S is ranking among the best of HTP-active hypergolic materials. The experimental and theoretical findings reveal that benefitting from the migration of thiolate groups, Cu14B-S, characterized by an electron-rich metal kernel, displays enhanced reducibility and superior charge transfer efficiency. This results in exceptional activation rates with HTP, consequently inducing carborane combustion and the simultaneous release of energy. This fundamental investigation shed light on the development of advanced green hypergolic propulsion systems.

3.
Angew Chem Int Ed Engl ; 63(19): e202402363, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497318

RESUMO

Crystalline frameworks represent a cutting-edge frontier in material science, and recently, there has been a surge of interest in energetic crystalline frameworks. However, the well-established porosity often leads to diminished output energy, necessitating a novel approach for performance enhancement. Thiol-yne coupling, a versatile metal-free click reaction, has been underutilized in crystalline frameworks. As a proof of concept, we herein demonstrate the potential of this approach by introducing the energy-rich, size-matched, and reductive 1,2-dicarbadodecaborane-1-thiol (CB-SH) into an acetylene-functionalized framework, Zn(AIm)2, via thiol-yne click reaction. This innovative decoration strategy resulted in a remarkable 46.6 % increase in energy density, a six-fold reduction in ignition delay time (4 ms) with red fuming nitric acid as the oxidizer, and impressive enhancement of stability. Density functional theory calculations were employed to elucidate the mechanism by which CB-SH promotes hypergolic ignition. The thiol-yne click modification strategy presented here permits engineering of crystalline frameworks for the design of advanced energetic materials.

4.
Adv Sci (Weinh) ; 11(23): e2401508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489671

RESUMO

3D porous organic frameworks, which possess the advantages of high surface area and abundant exposed active sites, are considered ideal platforms to accommodate single atoms (SAs) and metal nanoclusters (NCs) in high-performance catalysts; however, very little research has been conducted in this field. In the present work, a 3D porous organic framework containing Ni1 SAs and Nin NCs is prepared through the metal-assisted one-pot polycondensation of tetraaldehyde and hexaaminotriptycene. The single metal sites and metal clusters confined in the 3D space created a favorable micro-environment that facilitated the activation of chemically inert CO2 molecules, thus promoting the overall photoconversion efficiency and selectivity of CO2 reduction. The 3D-NiSAs/NiNCs-POPs, as a CO2 photoreduction catalyst, demonstrated an exceptional CO production rate of 6.24 mmol g-1 h-1, high selectivity of 98%, and excellent stability. The theoretical calculations uncovered that asymmetrical interaction between Ni1 SAs and Nin NCs not only favored the bending of CO2 molecules and reducing the CO2 reduction energy, but also regulated the electronic structure of the catalyst leading to the optimal binding strength of intermediates.

5.
Nat Commun ; 15(1): 1843, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418496

RESUMO

The development of facile tailoring approach to adjust the intrinsic activity and stability of atomically-precise metal nanoclusters catalysts is of great interest but remians challenging. Herein, the well-defined Au8 nanoclusters modified by single-atom sites are rationally synthesized via a co-eletropolymerization strategy, in which uniformly dispersed metal nanocluster and single-atom co-entrenched on the poly-carbazole matrix. Systematic characterization and theoretical modeling reveal that functionalizing single-atoms enable altering the electronic structures of Au8 clusters, which amplifies their electrocatalytic reduction of CO2 to CO activity by ~18.07 fold compared to isolated Au8 metal clusters. The rearrangements of the electronic structure not only strengthen the adsorption of the key intermediates *COOH, but also establish a favorable reaction pathway for the CO2 reduction reaction. Moreover, this strategy fixing nanoclusters and single-atoms on cross-linked polymer networks efficiently deduce the performance deactivation caused by agglomeration during the catalytic process. This work contribute to explore the intrinsic activity and stability improvement of metal clusters.

6.
Small ; 20(26): e2310970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243848

RESUMO

Hypergolicity is a highly desired characteristic for hybrid rocket engine-based fuels because it eliminates the need for a separate ignition system. Introducing hypergolic additives into conventional fuels through physical mixing is a feasible approach, but achieving highly reliable hypergolic ignition and energy release remains a major challenge. Here, the construction of core-shell Al@metal organic framework (MOF) heterostructures is reported as high-performance solid hypergolic propellants. Upon contact with the liquid oxidizer the uniformly distributed hypergolic MOF (Ag-MOF) shell can induce the ignition of hypergolic-inert fuel Al, resulting in Al combustion. Such a synthetic strategy is demonstrated to be favorable in hotspot generation and heat transfer relative to a simple physical mixture of Al/Ag-MOF, thus producing shorter ignition delay times and more efficient combustion. Thermal reactivity study indicated that the functionalization of the Ag-MOF shell changes the energy release process of the inner Al, which is accompanied by a thermite reaction. The synergistic effect of implantation of hypergolic MOF and high energy Al contributes to high specific impulses of 230-270 s over a wide range of oxidizer-to-fuel ratios.

7.
Am J Clin Pathol ; 160(5): 524-532, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37527544

RESUMO

OBJECTIVES: To evaluate the efficacy of an anti-CD38 nanobody to detect plasma cells in a flow cytometry myeloma minimal residual disease (MRD) panel in patients treated with daratumumab and other immunotherapies. METHODS: Twenty-three bone marrow samples from as many patients were collected during or at the end of daratumumab treatment cycles. A 5-tube, 8-color flow cytometry MRD panel was performed. Dotplots were reviewed, and the median fluorescence intensity (MFI) was calculated. RESULTS: Patients' ages ranged from 45 to 77 years, and the cohort was made up of 13 men and 10 women who had undergone 2 to 24 cycles of daratumumab therapy at the time of myeloma MRD testing. In all 23 cases, therapeutic use of daratumumab impaired pathologists' ability to measure CD38 on plasma cells when using a conventional murine monoclonal antibody (anti-CD38 fluorescein isothiocyanate [FITC], clone T16; Beckman Coulter). In 21 of the 23 cases, the measurement of CD38 was restored when the anti-CD38 nanobody was employed. Compared with anti-CD38 FITC, the anti-CD38 Alexa Fluor 488 nanobody (Beckman Coulter) produced higher MFI and allowed measurement of a higher frequency of discernable plasma cells. CONCLUSIONS: The camelid-derived CD38 antibody successfully circumvents the steric inhibition of CD38 that the therapeutic use of daratumumab imparts and facilitates myeloma MRD plasma cell detection.


Assuntos
Mieloma Múltiplo , Masculino , Humanos , Feminino , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Mieloma Múltiplo/tratamento farmacológico , ADP-Ribosil Ciclase 1 , Fluoresceína-5-Isotiocianato/uso terapêutico , Anticorpos Monoclonais/uso terapêutico
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123233, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595456

RESUMO

The broad occurrence of the hydrazine (N2H4) residues in aqueousenvironment is a potential threat to human health. Currently, the mainstream strategy for designing N2H4-specific probes is to functionalize a fluorophore with nucleophilic sites for the reductionreaction with N2H4. In this work, we designed and synthesized an excited-state intermolecular proton transfer (inter-ESPT) fluorescent dye(2-amino-4-(4-methoxyphenyl)-7,8-dihydro-5H-spiro[quinoline-6,2'-[1,3]dioxolane]-3-carbonitrilem, DQN) and used it as a probe to sense N2H4. DQN exhibits blue fluorescence in conventional solvents, which is assigned to its normal emission. In the presence of N2H4, the probe DQN can anchor the N2H4 molecule via hydrogen binding, enabling DQN to undergo inter-ESPT process and light up its tautomeric fluorescence. From this basis, an inter-ESPT-based method for N2H4 detection was established, offering high selectivity and sensitivity (11.5 nM). Furthermore, we demonstrated that the probe DQN can recognize the proteins in living cells, affording cell-imaging. This research provides a promising sensing strategy for monitoring N2H4 in water environments and this inter-ESPT dye is a powerful tool for cell-imaging.


Assuntos
Corantes Fluorescentes , Prótons , Humanos , Hidrogênio , Diagnóstico por Imagem , Fluorescência
9.
Cancer Genet ; 278-279: 50-54, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597337

RESUMO

We report a case of a 20-year-old man who presented with splenomegaly, hyperleukocytosis, anemia, and thrombocytopenia. A diagnosis of acute myeloid leukemia (AML) with LRRFIP1::FGFR1 rearrangement with complex karyotype was determined. Chromosome analysis showed a male karyotype: 46,XY,i(1)(q10),t(2;8)(q37;p11.2),der(5)t(1;5) (p22;q13)[17]46,XY[3]. Fluorescence in situ hybridization (FISH) analysis using the Cytocell FGFR1 break apart/amplification probe detected FGFR1 rearrangement with t(2:8) in 126/200 cells analyzed. Other FISH probes including 1p36/ 1q25 probes, del(5q) deletion probe, TLX3 break apart probe, and PDGFRB break apart probe were also utilized to confirm the other karyotypic abnormalities. Next-generation sequencing (NGS) SureSelectXT Custom DNA Target Somatic Detection detected RUNX1 gene mutation. NGS Archer FusionPlex (RNA) confirmed the LRRFIP1::FGFR1 rearrangement. This is the second reported case of AML with LRRFIP1::FGFR1 rearrangement and the first with a complex karyotype.


Assuntos
Leucemia Mieloide Aguda , Masculino , Humanos , Adulto Jovem , Adulto , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/genética , Cariotipagem , Cariótipo , Translocação Genética , Proteínas de Ligação a RNA/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
10.
Phys Chem Chem Phys ; 25(28): 19139-19146, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37431288

RESUMO

We investigate the structural, magnetic, electronic and optical properties of a transition metal-doped GaTeCl monolayer, denoted as M@GaTeCl (M = V, Cr, Mn, Fe and Co), by using first-principles calculations. It is found that the magnetic ground state can be regulated by different M elements. In the meantime, the electronic structure is different with the doping of different M metal atoms, and thus the optical absorption changes correspondingly. The electronic calculations of M@GaTeCl suggest that V@GaTeCl, Cr@GaTeCl, Mn@GaTeCl and Fe@GaTeCl are semiconductors and the magnetic ground states are G-type antiferromagnetic (AFM), C-type AFM, A-type AFM and C-type AFM order, respectively, while Co@GaTeCl is a metal and the ground state is ferromagnetic (FM) order. The different magnetic ground states are discussed with the Heisenberg model. The rough estimation of the ferroelectric polarization value of M@GaTeCl suggests that M@GaTeCl still exhibits multiferroicity. The electronic structure is explained by the projected density of states, band structure and decomposed charge of the valence band maximum (VBM) and conduction band minimum (CBM). Simultaneously, the absorption coefficient calculations indicate that M@GaTeCl absorption shows anisotropic properties, as the same as in a pure GaTeCl monolayer, there exists enhanced visible light absorption in these M@GaTeCl monolayers relative to the pure GaTeCl one, which can be interpreted by the anisotropic structure and by the peculiar electronic structure. Thus, we found that the magnetic ground state, the electronic structure, and the absorption coefficient of M@GaTeCl can be tuned by doping different transition metal M atoms, and the ferroelectricity is still retained, which makes M@GaTeCl a potential multifunctional material in spintronics and optics.

11.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987360

RESUMO

High-energy low-sensitivity explosives are research objectives in the field of energetic materials, and the formation of cocrystals is an important method to improve the safety of explosives. However, the sensitivity reduction mechanism of cocrystal explosives is still unclear. In this study, CL-20/TNT, CL-20 and TNT crystals were taken as research objects. On the basis of the ReaxFF-lg reactive force field, the propagation process of the wave front in the crystals at different impact velocities was simulated. The molecular dynamics data were used to analyze the molecular structure changes and initial chemical reactions, and to explore the sensitivity reduction mechanism of the CL-20/TNT cocrystal. The results showed that the chemical reaction of the CL-20/TNT cocrystal, compared with the CL-20 single crystal, is different under different impact velocities. At an impact velocity of 2 km/s, polymerization and separation of the component molecules weakened the decomposition of CL-20. At an impact velocity of 3 km/s, the decay rates of CL-20 and TNT in the cocrystal decreased, and the intermediate products were enhanced, such as nitrogen oxides. At an impact velocity of 4 km/s, the cocrystal had little effect on the decay rates of the molecules and formation of CO2, but it enhanced formation of N2 and H2O. This may explain the reason for the impact-sensitivity reduction of the CL-20/TNT cocrystal.

12.
Small ; 19(24): e2300157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36916694

RESUMO

Primary explosive, as a reliable initiator for secondary explosives, is the central component of micro-initiators for modern aerospace systems and military operations. However, they are typically prepared as powders, posing potential safety risks because of the inevitable particles scattering issues in the actual working environments. Here, the fabrication of a highly adaptive bulk material of copper azide (CA)-based safe primary explosive for micro-initiators is demonstrated. This bulk material, as derived by a complete azidation reaction of the carbonized metal-organic framework/cross-linked polymer hybrid template, enables the firm embedding of active CA species in a cross-linked carbon network (denoted as CA-C). Interestingly, this CA-C bulk material demonstrates multifarious mechanical stabilities (e.g., good shock and vibration resistance, and anti-overload capacity) in the simulated working conditions. Meanwhile, the CA contents in the CA-C bulk material reached as high as 70.3%, ensuring its detonation power. As a proof of concept, CA-C bulk material assembling in a micro-detonator can efficiently detonate the secondary explosive of CL-20 under laser irradiation. This work hereby advances the fabrication of safe and powerful primary explosives for the fulfillment of safe micro-initiator in a broad range of applications in aerospace systems.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122142, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36446173

RESUMO

Excited-state intermolecular proton transfer (inter-ESPT) fluorescent probes responsive to specific bioactive molecules should be greatly promising for protein sensing, DNA mutation simulating and cellular process regulating. However, the inter-ESPT molecules are recessive ESPT fluorophores, which need the assistance of other molecules with both hydrogen-bond accepting and donating abilities to turn on the tautomeric fluorescence. Valid design strategies to create powerful inter-ESPT fluorescent probes are poorly developed, particularly for proteins as targets. We recently reported a unique supramolecular strategy to trigger the inter-ESPT process based on the probe-protein recognition by H-bonding and to image protein-based subcellular structures in live cells. Herein, we found that our inter-ESPT probes (inter-ESPT-01) bearing a 2-amino-3-cyanopyridine scaffold can anchor proteins and light up the "invisible" ESPT state, so as to image the proteins or the protein-based subcellular organelles. More importantly, the inter-ESPT emission of inter-ESPT-01 can be significantly enhanced by the FRET process between amino and imino tautomers, endowing the inter-ESPT-01 probes with super-bright tautomeric fluorescence. The expressed proteins Ecallantide and MarTX were selected as the models to light up the inter-ESPT fluorescence of the probes and revealed that the inter-ESPT process can be triggered by the specific probe-protein recognition events. In the use of the super-bright inter-ESPT fluorescence, not only the proteins, but also the protein-based cilia and tunneling nanotubes (TNTs) can be specifically visualized in living cancer cells. Furthermore, such recognition-driven strategy allows us to construct a unique inter-ESPT probe to track and image specific endogenous proteins in live cells, highlighting the potential of inter-ESPT fluorogens as novel intelligent biomaterials.


Assuntos
Corantes Fluorescentes , Prótons , Corantes Fluorescentes/química , Transferência Ressonante de Energia de Fluorescência , Cílios
15.
J Hematop ; 16(3): 131-140, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38175400

RESUMO

Central nervous system (CNS) involvement is a serious complication in hematologic malignancy, and early detection and management of CNS involvement in these cases significantly impact the prognosis. Currently, there is no consensus on the use of multiparametric flow cytometry (MFC) and conventional cytology (CC) testing for initial and follow-up cerebrospinal fluid (CSF) specimens to diagnose CNS involvement by hematologic malignancy. In our institution, after initial MFC and CC, two subsequent negative MFCs are required before discontinuing MFC. The aim of this study is to evaluate the outcome of this approach. CSF cytology and MFC reports were retrieved from Laboratory Information System, and data was reviewed. Between January 2020 and December 2021, 1789 CSF samples from 280 patients were submitted for CSF analysis. For those 517 CSF samples tested by both MFC and CC, 97 cases tested positive by both MFC and CC with 95% concordance. Eighteen cases were MFC + /CC - and 7 were MFC - /CC + . Thirty-six cases had initially positive MFCs followed by more than one MFC evaluation. Among those 36 cases, 22 cases (61.1%) converted to negative after the second follow-up sample, 9 cases (25%) were continuously positive for at least three samples, and 5 cases (13.9%) exhibited negative to positive conversion. Compared to negative CSF cases, positive CSFs had higher total nucleated cell count and higher total protein levels while red blood cells, glucose, and lactate dehydrogenase levels remained at comparable levels. The concordance between MFC and CC was excellent. The high incidence of positive MFCs on two or more follow-up samples and the high frequency of negative MFC to positive conversion indicate the necessity of repeated negative MFCs before discontinuing MFC. The fact that more than half of the positive cases converted to negative after the second CSF specimen and most follow-up positive cases can be detected by CC alone suggests it is adequate to use CC alone for follow-up CSF study after two consecutive negative MFCs.


Assuntos
Sistemas de Informação em Laboratório Clínico , Neoplasias Hematológicas , Humanos , Seguimentos , Neoplasias Hematológicas/complicações , Contagem de Células , Consenso
16.
J Hematop ; 16(2): 85-94, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175444

RESUMO

Measurable residual disease (MRD) detection for precursor B-lymphoblastic leukemia (B-ALL) has become the standard of care. However, the testing methodology has not been standardized. We aim to correlate COG multiparameter flow cytometry (MFC) and ClonoSEQ techniques to assess the test characteristics, to study abnormal immunophenotype for B-ALL MRD, and to observe B-ALL clonal evolution and the impact of blinatumomab therapy on MFC testing. MFC and molecular reports were retrieved from electronic medical records and data was reviewed. Included in this study were 74 bone marrow samples collected from 31 B-ALL patients at our institution between January 2021 and March 2022. COG MFC and ClonoSEQ results were concordant in 59/74 samples (80%) with positive concordant results in 12 samples (16%) and negative concordant results in 47 samples (64%). Discordant results were seen in 15/74 samples (20%), with 14 samples (19%) showing ClonoSEQ + /MFC- results and only 1 sample (1%) showing MFC + /ClonoSEQ- result. ClonoSEQ + /MFC- cases had MRD values ranging from 1 to 1400 cells/million nucleated cells with 86% of cases showing MRD values of < 100 cells/million nucleated cells. Newly identified dominant sequences were detected using ClonoSEQ in 2/31 patients (6%) during follow-up. All 14 bone marrow samples from 8 patients, who had gone through blinatumomab immunotherapy, were MRD negative by MFC, but 3 cases were MRD positive by ClonoSEQ. Our results show strong correlation between COG MFC and ClonoSEQ (r = 0.96), and both methods are complementary. Clonal evolution may occur, and blinatumomab immunotherapy may impact MFC B-ALL MRD evaluation.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Citometria de Fluxo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Evolução Clonal , Registros Eletrônicos de Saúde , Neoplasia Residual
17.
Biosensors (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290915

RESUMO

Knowledge on the spectral properties of the tautomers of milrinone (MLR) in solvents and solid-state, as well as under light conditions is of critical importance from both theoretical and practical points of view. Herein, we investigated the spectral properties of MLR in different conditions using UV-Vis and fluorescence spectroscopies. The experimental results demonstrated that MLR can undergo the tautomerization reaction induced by solvent polarity, light and pH, eliciting four tautomeric structures (enol, keto, anion, and cation forms). The interesting multi-functional groups in MLR enable it to coordinate with metal ions or to recognize gust molecules by H-bonding. In the use of MLR as an excited-state intermolecular proton transfer (inter-ESPT) fluorescent probe, a highly sensitive and selective analysis of Fe3+ was developed, which offered a sensitive detection of Fe3+ with the detection limit of 3.5 nM. More importantly, MLR exhibited the ability of anchoring proteins and led to the recognition-driven turn-on inter-ESPT process, highlighting the potential for the probe to image proteins in electrophoresis gels. The spectral experimental results revealed the possible degradation mechanism, so that we can better understand the side effects of oral preparations. The use of the available drug as an inter-ESPT fluorescent probe is simple and accurate, providing a good method for Fe3+ ion sensing and protein staining.


Assuntos
Corantes Fluorescentes , Prótons , Corantes Fluorescentes/química , Milrinona , Solventes/química , Ânions , Coloração e Rotulagem , Cátions , Géis
18.
J Am Chem Soc ; 144(46): 21046-21055, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36316180

RESUMO

Chemical warfare agents (CWAs) are among the most lethal chemicals known to humans. Thus, developing multifunctional catalysts for highly efficient detoxification of various CWAs is of great importance. In this work, we developed a robust copper tetrazolate metal-organic framework (MOF) catalyst containing a dicopper unit similar to the coordination geometry of the active sites of natural phosphatase and tyrosinase enzymes. This catalyst aided in phosphate ester bond hydrolysis and hydrogen peroxide decomposition, ultimately achieving high detoxification efficiency against both a nerve agent simulant (diethoxy-phosphoryl cyanide (DECP)) with a half-life of 3.5 min and a sulfur mustard simulant (2-chloroethyl ethyl sulfide (CEES)) with a half-life of 4.5 min, making it competitive with other reported materials. The dicopper sites in ZZU-282 provide versatile binding modes with the substrates, thereby promoting the activation of substrates and enhancing the catalytic efficiency. A combination of postmodified metal exchange control experiments, density functional theory calculations, and catalytic evaluations confirmed that dual Cu sites are the active centers promoting the catalytic reaction. This study offers a new design perspective to achieve advanced catalysts for CWA detoxification.


Assuntos
Substâncias para a Guerra Química , Estruturas Metalorgânicas , Humanos , Substâncias para a Guerra Química/química , Cobre , Catálise , Organofosfatos
19.
Molecules ; 27(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014404

RESUMO

Nitrite (NO2-) is a common pollutant and is widely present in the environment and in human bodies. The development of a rapid and accurate method for NO2- detection is always a very important task. Herein, we synthesized a partnered excited-state intermolecular proton transfer (ESIPT) fluorophore using the "multi-component one pot" method, and used this as a probe (ESIPT-F) for sensing NO2-. ESIPT-F exhibited bimodal emission in different solvents because of the solvent-mediated ESIPT reaction. The addition of NO2- caused an obvious change in colors and tautomeric fluorescence due to the graft of NO2- into the ESIPT-F molecules. From this basis, highly sensitive and selective analysis of NO2- was developed using tautomeric emission signaling, achieving sensitive detection of NO2- in the concentration range of 0~45 mM with a detection limit of 12.5 nM. More importantly, ESIPT-F showed the ability to anchor proteins and resulted in a recognition-driven "on-off" ESIPT process, enabling it to become a powerful tool for fluorescence imaging of proteins or protein-based subcellular organelles. MTT experimental results revealed that ESIPT-F is low cytotoxic and has good membrane permeability to cells. Thus, ESIPT-F was further employed to image the tunneling nanotube in vitro HEC-1A cells, displaying high-resolution performance.


Assuntos
Nitratos , Prótons , Corantes Fluorescentes , Humanos , Dióxido de Nitrogênio , Óxidos de Nitrogênio , Solventes , Espectrometria de Fluorescência
20.
Chem Commun (Camb) ; 58(70): 9806-9809, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35971910

RESUMO

Two porphyrinic silver-chalcogenide cluster-based MOFs were achieved using a phosphate anionic template strategy, and the highly photoactive organic building modules combined with Lewis acidic silver clusters allow both SCC-MOFs to be used as versatile catalysts for the simultaneous degradation of sulfur mustard and nerve agent simulants.


Assuntos
Substâncias para a Guerra Química , Estruturas Metalorgânicas , Ânions , Fosfatos , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...