Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38948803

RESUMO

About one-third of all human cancers encode abnormal RAS proteins locked in a constitutively activated state to drive malignant transformation and uncontrolled tumor growth. Despite progress in development of small molecules for treatment of mutant KRAS cancers, there is a need for a pan-RAS inhibitor that is effective against all RAS isoforms and variants and that avoids drug resistance. We have previously shown that the naturally occurring bacterial enzyme RAS/RAP1-specific endopeptidase (RRSP) is a potent RAS degrader that can be re-engineered as a biologic therapy to induce regression of colorectal, breast, and pancreatic tumors. Here, we have developed a strategy for in vivo expression of this RAS degrader via mRNA delivery using a synthetic nonviral gene delivery platform composed of the poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) block copolymer conjugated to a dendritic cationic peptide (PPDP2). Using this strategy, PPDP2 is shown to deliver mRNA to both human and mouse pancreatic cells resulting in RRSP gene expression, activity, and loss of cell proliferation. Further, pancreatic tumors are reduced with residual tumors lacking detectable RAS and phosphorylated ERK. These data support that mRNA-loaded synthetic nanocarrier delivery of a RAS degrader can interrupt the RAS signaling system within pancreatic cancer cells while avoiding side effects during therapy.

2.
J Affect Disord ; 361: 612-619, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925305

RESUMO

OBJECTIVE: The relationship between atherosclerotic burden, depressive symptoms, and clinically relevant depression (CRD) in hypertensive patients is unclear. In this study, we used the atherosclerotic index of plasma (AIP) to quantify atherosclerotic burden and explore its association with depressive symptoms and CRD in hypertensive patients. METHODS: Hypertension-diagnosed patients were extracted from the National Health and Nutrition Examination Survey (NHANES) database. The relationships between AIP and depressive symptoms and CRD risk in patients were examined through the weighted logistic regression and the weighted linear regression models. Restrictive cubic spline curves were employed to analyze potential nonlinear associations between AIP and outcome indicators. Additionally, subgroup analyses and intergroup interaction tests were conducted. RESULTS: The AIP was considerably associated with the severity of depressive symptoms in hypertensive patients, according to the findings of weighted linear regression. Weighted logistic regression analysis showed that high AIP was significantly associated with a high risk of clinically relevant depression in hypertensive patients. This trend was consistent across various subgroups within the population. CONCLUSION: AIP was observed to be a significant risk factor for clinically relevant depression in hypertensive patients. Atherosclerotic burden in hypertensive patients was significantly associated with the severity of their depressive symptoms.


Assuntos
Aterosclerose , Depressão , Hipertensão , Inquéritos Nutricionais , Humanos , Feminino , Masculino , Hipertensão/epidemiologia , Pessoa de Meia-Idade , Estudos Transversais , Aterosclerose/epidemiologia , Depressão/epidemiologia , Idoso , Fatores de Risco , Adulto
3.
JACS Au ; 4(6): 2211-2219, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38938815

RESUMO

Molten NaF-BeF2 salt is widely considered a promising candidate to replace FLiBe in molten salt reactor applications, which is crucial to reducing the operating costs of the molten salt reactor. Studies on beryllium compounds are rarely conducted due to their volatility and high toxicity. Herein, the Be-F coordination structure of NaF/BeF2 mixed salts was investigated in-depth through various HT-NMR and solid-state NMR methods, which are optimized to be appropriate for the detection of beryllium compounds. It was found that Na2BeF4 and NaBeF3 crystals were transformed into amorphous tetrahedral coordinated networks when there was an increase in the BeF2 concentration in the mixed salts. The main coordinate structure comparisons between FNaBe and FLiBe were analyzed, which exhibit high similarity due to the covalent effect of Be-F bonding, demonstrating the theoretical feasibility of applying FNaBe salts as a substitute for FLiBe in MSR systems. In addition, the transition from the crystal phase to the amorphous phase occurred at a lower BeF2 concentration for FNaBe than that for FLiBe. This was further verified by the results of ab initio molecular dynamics (AIMD) simulation that FNaBe melts had more disordered structures, thus causing slight changes in their physical properties.

4.
Int J Biol Macromol ; 273(Pt 1): 133035, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866276

RESUMO

The early symptoms of neurodegenerative diseases include oxidative stress disorder and accelerated inflammation levels. Edible fungi polysaccharides play essential roles in anti-neuroinflammation. We analyzed the regulatory mechanisms of polysaccharides from extracellular Armillariella tabescens (ATEP) in alleviating neuroinflammation in mice. Mice were induced with d-galactose and aluminum chloride to establish an animal model of Alzheimer's disease, then intragastrically treated with ATEP, which had been previously analyzed for its physicochemical properties. We assessed the critical characteristics of mice treated for neuroinflammation, including cognitive behavior, the anti-inflammatory potential of ATEP in hippocampal pathology and critical protein expression, and changes in fecal microbial composition and metabolites. ATEP intervened in oxidative stress by enhancing antioxidant enzyme activities and suppressing the Keap-1/Nrf2 signaling pathway. Changing the Nrf2 content in the nucleus led to changes in the downstream oxidation-related enzymes, HO-1, NQO-1, iNOS, and COX-2, and the neuronal morphology in CA3 region of the hippocampus. Microbiome analysis revealed that ATEP remodeled the gut microbiotas and regulated the short-chain fatty acids-producing bacteria. Early intervention with ATEP via active dietary supplementation may promote neuroprotection.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Polissacarídeos , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/química , Estresse Oxidativo/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Galactose , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/induzido quimicamente
5.
Front Endocrinol (Lausanne) ; 15: 1385154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894741

RESUMO

During pregnancy, there is a link between disruption of maternal immune tolerance and preeclampsia, but the molecular mechanisms that regulate maternal and fetal immune tolerance remain unclear. This study employs bioinformatics to identify new markers related to placental immune tolerance and explore their potential role in predicting preeclampsia. Analyzing preeclampsia-related gene expression profiles in the Gene Expression Omnibus (GEO) dataset reveals 211 differentially expressed genes (DEGs) in the placenta, mainly influencing immune cell differentiation and response pathways. Employing weighted gene co-expression network analysis (WGCNA) and lasso regression, four potential target genes (ANKRD37, CRH, LEP, SIGLEC6) are identified for potential prediction of preeclampsia. Validation using the GSE4707 dataset confirmed the diagnostic and predictive potential of these candidate genes. RT-qPCR verified up-regulation in the placenta, while ELISA showed their correlation with immune tolerance factors associated with placental immune tolerance. As a result of this study, identifies potential biomarkers associated with placental immunity and contributes to understanding the molecular mechanism of preeclampsia.


Assuntos
Biomarcadores , Tolerância Imunológica , Placenta , Pré-Eclâmpsia , Humanos , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/genética , Gravidez , Feminino , Placenta/metabolismo , Placenta/imunologia , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Transcriptoma , Adulto
6.
Res Sq ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38746232

RESUMO

The development of subunit vaccines that mimic the molecular complexity of attenuated vaccines has been limited by the difficulty of intracellular co-delivery of multiple chemically diverse payloads at controllable concentrations. We report on hierarchical hydrogel depots employing simple poly(propylene sulfone) homopolymers to enable ratiometric loading of a protein antigen and four physicochemically distinct adjuvants in a hierarchical manner. The optimized vaccine consisted of immunostimulants either adsorbed to or encapsulated within nanogels, which were capable of noncovalent anchoring to subcutaneous tissues. These 5-component nanogel vaccines demonstrated enhanced humoral and cell-mediated immune responses compared to formulations with standard single adjuvant and antigen pairing. The use of a single simple homopolymer capable of rapid and stable loading and intracellular delivery of diverse molecular cargoes holds promise for facile development and optimization of scalable subunit vaccines and complex therapeutic formulations for a wide range of biomedical applications.

7.
Neuroendocrinology ; 114(6): 589-601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38565081

RESUMO

INTRODUCTION: Growth hormone (GH) secreting pituitary adenoma is considered one of the most harmful types of Pituitary Neuroendocrine Tumors (PitNETs). Our previous research has found that high expression of Lysine methyltransferase 5A (KMT5A) is closely related to the proliferation of PitNETs. The aim of this study was to investigate the role and molecular mechanism of KMT5A in the progression of GH PitNETs. METHODS: Immunohistochemistry, qRT-PCR, and Western blot (WB) were used to assess the expression levels of KMT5A in human normal pituitary and GH PitNETs, as well as in rat normal pituitary and GH3 cells. Additionally, we utilized RNA interference technology and treatment with a selective KMT5A inhibitor to decrease the expression of KMT5A in GH3 cells. CCK-8, EdU, flow cytometry (FCM), clone formation, and WB assay were further employed to evaluate the impact of KMT5A on the proliferation of GH3 cells in vitro. A xenograft model was established to evaluate the role of KMT5A in GH PitNETs progression in vivo. RESULTS: KMT5A was highly expressed in GH PitNETs and GH3 cells. Moreover, the reduction of KMT5A expression led to inhibited growth of GH PitNETs and increased apoptosis of tumor cells, as indicated by the findings from CCK-8, EdU, clone formation, and FCM assays. Additionally, WB analysis identified the Wnt/ß-catenin signaling pathway as a potential mechanism through which KMT5A promotes GH PitNETs progression. CONCLUSION: Our research suggests that KMT5A may facilitate the progression of GH PitNETs via the Wnt/ß-catenin signaling pathway. Therefore, KMT5A may serve as a potential therapeutic target and molecular biomarker for GH PitNETs.


Assuntos
Tumores Neuroendócrinos , Via de Sinalização Wnt , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Adenoma/metabolismo , Adenoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Camundongos Nus , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos
8.
Water Res ; 255: 121533, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569359

RESUMO

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

9.
Int Arch Allergy Immunol ; 185(7): 718-728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38513629

RESUMO

INTRODUCTION: The purpose of this study was to assess the clinical effectiveness and safety profile of omalizumab as a therapeutic intervention for chronic urticaria (CU). METHODS: From March 1, 2023, to September 30, 2023, data on a cohort comprising 96 patients with CU, who underwent treatment with omalizumab at our medical institution's allergy clinic, were systematically compiled. Subsequent to the administration of omalizumab, the therapeutic efficacy was assessed utilizing the 7-day urticaria activity score and the urticaria control test. RESULTS: Based on the statistical analysis, the mean duration of therapeutic intervention was 2.4 ± 1.3 months, with a corresponding mean cumulative dosage of 765 ± 450 mg. Of the subset of 42 patients with CU who were subjected to a follow-up period exceeding 3 months, it was observed that the treatment led to complete symptom remission, and no instances of recurrence were documented. Notably, there were statistically significant differences in the treatment duration and the cumulative dosage between patients who experienced co-morbid conditions and those who did not (p < 0.01, 95% CI: 0.280-1.326; p < 0.01, 95% CI: 0.597-2.997). Furthermore, there were significant differences in the treatment duration and cumulative dosage between patients in the combined allergic rhinitis group and those in the non-combined allergic rhinitis group (p < 0.01, 95% CI: 0.204-1.305; p = 0.01, 95% CI: 0.326-2.860). CONCLUSION: Omalizumab demonstrates efficacy in the management of CU among Chinese patients by exerting effective symptom control and facilitating the regression of skin lesions. The assessment of its therapeutic efficacy typically requires a 12-week treatment period. Moreover, the co-occurrence of CU with other allergic disorders serves as a pertinent consideration for the adjustment of omalizumab dosing regimens.


Assuntos
Antialérgicos , Urticária Crônica , Omalizumab , Humanos , Omalizumab/uso terapêutico , Urticária Crônica/tratamento farmacológico , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Antialérgicos/uso terapêutico , Adulto Jovem
10.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509085

RESUMO

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Assuntos
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleosídeos , Lactobacillus , Prolina , Purinas
11.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547102

RESUMO

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Assuntos
Peróxido de Hidrogênio , Compostos Orgânicos , Oxirredução , Raios Ultravioleta , Peróxido de Hidrogênio/química , Compostos Orgânicos/química , Fotólise , Poluentes Químicos da Água/química , Nitratos/química
12.
Plant Cell Physiol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545690

RESUMO

The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.

13.
Water Res ; 253: 121353, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401473

RESUMO

Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Animais , Bromo , Águas Residuárias , Compostos Férricos , Peróxido de Hidrogênio/análise , Oxirredução , Poluentes Químicos da Água/química , Purificação da Água/métodos , Ferro/química , Ozônio/química , Mamíferos
14.
Environ Sci Process Impacts ; 26(5): 824-831, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323647

RESUMO

The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.


Assuntos
Desinfecção , Peróxido de Hidrogênio , Levivirus , Ozônio , Peróxidos , Purificação da Água , Ozônio/química , Ozônio/farmacologia , Desinfecção/métodos , Levivirus/efeitos dos fármacos , Peróxidos/química , Purificação da Água/métodos , Microbiologia da Água , Desinfetantes/farmacologia , Oxidantes/farmacologia , Oxidantes/química
15.
Nat Nanotechnol ; 19(5): 698-704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228804

RESUMO

Protein adsorption onto nanomaterials often results in denaturation and loss of bioactivity. Controlling the adsorption process to maintain the protein structure and function has potential for a range of applications. Here we report that self-assembled poly(propylene sulfone) (PPSU) nanoparticles support the controlled formation of multicomponent enzyme and antibody coatings and maintain their bioactivity. Simulations indicate that hydrophobic patches on protein surfaces induce a site-specific dipole relaxation of PPSU assemblies to non-covalently anchor the proteins without disrupting the protein hydrogen bonding or structure. As a proof of concept, a nanotherapy employing multiple mast-cell-targeted antibodies for preventing anaphylaxis is demonstrated in a humanized mouse model. PPSU nanoparticles displaying an optimized ratio of co-adsorbed anti-Siglec-6 and anti-FcεRIα antibodies effectively inhibit mast cell activation and degranulation, preventing anaphylaxis. Protein immobilization on PPSU surfaces provides a simple and rapid platform for the development of targeted protein nanomedicines.


Assuntos
Mastócitos , Nanopartículas , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Animais , Camundongos , Adsorção , Humanos , Nanopartículas/química , Nanomedicina/métodos , Anafilaxia , Polipropilenos/química , Degranulação Celular/efeitos dos fármacos
16.
RSC Adv ; 14(5): 3024-3032, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239450

RESUMO

Oxides are one of the most important impurities in the fuel salt of molten salt reactors (MSRs), and excessive oxide impurities pose a risk to the safe operation of MSRs. This study focused on investigating the precipitation behavior between Th4+, U4+, and Be2+ with O2- in the 2LiF-BeF2 (FLiBe) eutectic salt system. The results showed that the solubility of UO2 was 5.52 × 10-3 mol kg-1, and the solubility product (Ksp) of UO2 was 6.14 × 10-7 mol3 kg-3 in FLiBe salt at 650 °C. It was also found that the O2- ion would firstly react with U4+ to form UO2, and then the excessive O2- would react with Be2+ to generate BeO in the FLiBe system. Despite conducting the solubility experiment of ThO2 and titration experiment of FLiBe-ThF4, the system failed to achieve the solubility and the Ksp of ThO2. The main reason for this was that O2- preferentially reacted with Be2+ over Th4+ to form precipitates, in other words, Be2+ exerted a protective effect against Th4+. Above all, this work experimentally demonstrated that in the FLiBe system, O2- preferentially combines with U4+ to form a precipitate, followed by Be2+, while Th4+ is relatively inert.

17.
Chemosphere ; 349: 140807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029937

RESUMO

Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Matéria Orgânica Dissolvida , Halogenação , Cloro/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Desinfetantes/química
18.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154042

RESUMO

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/toxicidade , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodos
19.
Fish Shellfish Immunol ; 145: 109322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128679

RESUMO

Nocardia seriolae is a severe bacterial pathogen that has seriously affected the development of aquaculture industry. Largemouth bass (Micropterus salmoides) is a commercially significant freshwater fish that suffers a variety of environmental threats, including bacterial pathogens. However, the immune responses and metabolic alterations of largemouth bass to N. seriolae infection remain largely unclear. We discovered that N. seriolae caused pathological alterations in largemouth bass and shifted the transcript of immune-related and apoptotic genes in head kidney after infection. To answer the aforementioned question, a combined transcriptome and metabolome analysis was employed to explore the alterations in genes, metabolites, and metabolic pathways in largemouth bass following bacterial infection. A total of 3579 genes and 1929 metabolites are significant differentially changed in the head kidney post infection. In response to N. seriolae infection, host modifies the PI3K-Akt signaling pathway, TCA cycle, glycolysis, and amino acid metabolism. The integrated analysis of transcriptome and metabolome suggested that with the arginine metabolism pathway as the core, multiple biomarkers (arg gene, arginine) are involved in the antibacterial and immune functions of largemouth bass. Thus, we hypothesized that arginine plays a crucial role in the immune responses of largemouth bass against N. seriolae infection, and increasing arginine levels suitably is beneficial for the host against bacterial infection. Our results shed light on the regulatory mechanism of largemouth bass resistance to N. seriolae infection and contributed to the development of more effective N. seriolae resistance strategies.


Assuntos
Infecções Bacterianas , Bass , Nocardiose , Nocardia , Animais , Transcriptoma , Fosfatidilinositol 3-Quinases/genética , Metaboloma , Arginina
20.
J Environ Sci (China) ; 139: 12-22, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105040

RESUMO

Carbon nitride has been extensively used as a visible-light photocatalyst, but it has the disadvantages of a low specific surface area, rapid electron-hole recombination, and relatively low light absorbance. In this study, single-atom Ag was successfully anchored on ultrathin carbon nitride (UTCN) via thermal polymerization, the catalyst obtained is called AgUTCN. The Ag hardly changed the carbon nitride's layered and porous physical structure. AgUTCN exhibited efficient visible-light photocatalytic performances in the degradation of various recalcitrant pollutants, eliminations of 85% were achieved by visible-light irradiation for 1 hr. Doping with Ag improved the photocatalytic performance of UTCN by narrowing the forbidden band gap from 2.49 to 2.36 eV and suppressing electron-hole pair recombination. In addition, Ag doping facilitated O2 adsorption on UTCN by decreasing the adsorption energy from -0.2 to -2.22 eV and favored the formation of O2·-. Electron spin resonance and radical-quenching experiments showed that O2·- was the major reactive species in the degradation of Acetaminophen (paracetamol, APAP).


Assuntos
Acetaminofen , Poluentes Ambientais , Nitrilas/química , Carbono , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...