Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(25): 29676-29690, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138532

RESUMO

Electrolyte additives have been extensively used as an economical approach to improve Li-ion battery (LIB) performances; however, their selection has been conducted on an Edisonian trial-and-error basis, with little knowledge about the relationship between their molecular structure and reactivity as well as the electrochemical performance. In this work, a series of phosphate additives with systematic structural variation were introduced with the purpose of revealing the significance of additive structure in building a robust interphase and electrochemical property in LIBs. By comparing the interphases formed by tripropyl phosphate (TPPC1), triallyl phosphate (TPPC2), and tripropargyl phosphate (TPPC3) containing alkane, alkene, and alkyne functionalities, respectively, theoretical calculations and comprehensive characterizations reveal that TPPC3 and TPPC2 exhibit more reactivity than TPPC1, and both can preferentially decompose both reductively and oxidatively, forming dense and protective interphases on both the cathode and anode, but they lead to different long-term cycling behaviors at 55 °C. We herein correlate the electrochemical performance of the high energy Li-ion cells to the molecular structure of these additives, and it is found that the effectiveness of TPPC1, TPPC2, and TPPC3 in preventing gas generation, suppressing interfacial resistance growth, and improving cycling stability can be described as TPPC3 > TPPC2 > TPPC1, i.e., the most unsaturated additive TPPC3 is the most effective additive among them. The established correlation between structure-reactivity and interphase-performance will doubtlessly construct the principle foundation for the rational design of new electrolyte components for future battery chemistry.

2.
ACS Appl Mater Interfaces ; 12(9): 10443-10451, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32040291

RESUMO

Electrolytes in modern Li ion batteries (LIBs) rely on additives of various structures to generate key interphasial chemistries needed for desired performances, although how these additives operate in battery environments remains little understood. Meanwhile, these traditional additives face increasing challenges from emerging battery chemistries, especially those based on the nickel cathode (Ni ≥ 50%) or the metallic lithium anode. In this work, we report a new additive structure with the highest unsaturation degree known so far along with the in-depth understanding of its breakdown mechanism on those aggressive electrode surfaces. Tripropargyl phosphate (TPP) containing three carbon-carbon triple bonds was found to form dense and protective interphases on both NMC532 cathode as well as graphitic and metallic lithium anodes, leading to significant improvements in performances of both LIBs and lithium metal batteries (LMBs). Comprehensive characterizations together with calculations reveal how the unsaturation functionalities of TPP interact with these electrode chemistries and establish interphases that inhibit gas generation, suppress lithium dendrite growth, and prevent transition metal ion dissolution and deposition on the anode surface. The correlation established among the additive structure, interphasial chemistries, and cell performance will doubtlessly guide us in designing the electrolytes with atomistic precision for future battery chemistries.

3.
J Colloid Interface Sci ; 537: 475-485, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469116

RESUMO

Nitrogen-doped porous carbons have been extensively investigated to improve the specific capacitance in aqueous electrolytes by increasing the specific surface area and nitrogen content and by optimizing the pore structure. However, research on the effect of electrolyte cations on the specific capacitance of these materials is rare, especially for neutral electrolytes. Herein, a nitrogen-rich hierarchically porous carbon (NRHPC) with a high nitrogen content of 12.3 atm% is successfully prepared by pyrolyzing a mixture of bagasse, K2CO3 and urea in a mass ratio of 2:1:4. It is found that NRHPC shows superior electrochemical performance in MgSO4 than in Li2SO4 electrolyte, with specific capacitances of 315.0, 274.4, and 188.1 F g-1 at 1.0, 10.0, and 100 A g-1, respectively. Furthermore, it is found that the capacitance enhancement is closely related to the nitrogen content of the porous carbon materials. Theoretical calculation reveals that the Mg2+ ions have higher affinity towards the N atoms than Li+, producing higher charge storage capability via interaction between the Mg2+ and N atoms. When the 1.0 M MgSO4 is used as electrolyte, a symmetric capacitor based on the nitrogen-rich hierarchically porous carbon shows a high energy density of 39.5 Wh kg-1 at a power density of 0.9 kW kg-1. Moreover, this as-assembled device displays superior long-term cycling stability, with a capacitance retention of >96.2% after 10,000 cycles at 10.0 A g-1.


Assuntos
Carbono/química , Sulfato de Magnésio/química , Nitrogênio/química , Água/química , Biomassa , Eletrólitos/química , Tamanho da Partícula , Porosidade , Eliminação de Resíduos , Propriedades de Superfície
4.
Inorg Chem ; 57(19): 12245-12254, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30211546

RESUMO

To overcome the problems faced by TiO2 materials for lithium-ion batteries usage, such as easy nanoparticles agglomeration during cycling and poor cycling performance, in this study, TiO2 nanorods with the controlled phase compositions are prepared via direct pyrolysis of single molecule precursors in combination with a simple washing process. By tuning the external cations in the single source precursors, three TiO2 samples in a nanorod shape with the compositions of pure anatase, anatase-rutile dual phase, and anatase-TiO2(B) dual phase are synthesized successfully. High-resolution transmission electron microscopy, X-ray powder diffraction, and Raman measurements confirm the phase structures and compositions of the three prepared samples. The electrochemical results manifest that all the three nanorod-shaped TiO2 samples show the long-term cycling stability as negative materials for LIBs. Among them, the TiO2 sample with the combination of the anatase and TiO2-B phase shows the best performance, with the specific capacity of ∼184, 164, 140, 105, 80, and 60 mAh g-1 at 0.1, 0.3, 0.5, 1.5, 3.0, and 5.0 A g-1, respectively, and showing no capacity loss and low resistance after 1000 cycles at 1.5 A g-1. By the analysis of the cyclic voltammetry results recorded from different scan rates, the lithium-ion storage mechanism is clarified, which is dominated by the semi-infinite linear diffusion (anatase phase) in combination with the partial surface pseudocapacitive contribution [TiO2(B) phase]. As a result, this sample shows a great potential as a negative material for LIBs because of its electrochemical stability, high specific capacity, and superior rate capability. The proof-of-concept design of the anatase and TiO2-B dual phase may provide a new strategy for the synthesis of high performance TiO2-based anode material for LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA