Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Res ; 71(5-6): 695-710, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35426501

RESUMO

BACKGROUND: A20 is an anti-inflammatory molecule in nucleus pulposus (NP) cells. The anti-inflammatory properties of A20 are mainly attributed to its ability to suppress the NF-κB pathway. However, A20 can protect cells from death independently of NF-κB regulation. This study aimed to investigate the effects of A20 on pyroptosis and apoptosis of NP cells induced by lipopolysaccharide (LPS). METHODS: NP cells induced by LPS were used as an in vitro model of the inflammatory environment of the intervertebral disc. Pyroptosis, apoptosis, and mitophagy marker proteins were detected. Then, NP cells were transfected with A20 overexpressed lentivirus or A20-siRNA. Annexin V FITC/PI, Western blotting, and immunofluorescence assays were used to detect the apoptosis, pyroptosis, and mitophagy of NP cells. Furthermore, the expressions of A20, related proteins, and related inflammatory cytokines were detected by western blotting, and ELISA. RESULTS: Apoptosis and pyroptosis of NP cells increased gradually treated with LPS for 12 h, 24 h, and 48 h. Differently, the level of mitophagy increased first and then decreased, and was the highest at LPS treatment for 12 h. Overexpression or knockdown of A20 in NP cells revealed that A20 attenuated the pyroptosis, apoptosis, and production of inflammatory cytokines of NP cells induced by LPS, while A20 sponsored mitophagy, reduced ROS production and collapse of mitochondrial membrane potential (ΔΨm). Moreover, A20 also promoted mitochondrial dynamic homeostasis and attenuated LPS-induced excessive mitochondrial fission. Excitingly, inhibition of mitophagy attenuated the effect of A20 on the negative regulation of pyroptosis of NP cells induced by LPS. Pyroptosis was accompanied by a large release of inflammatory cytokines. Inhibition of pyroptosis also significantly reduced apoptosis of NP cells. Finally, The mitochondria-targeted active peptide SS-31 inhibited LPS-induced pyroptosis and ROS production in NP cells. CONCLUSIONS: To sum up, A20 attenuates pyroptosis and apoptosis of NP cells via promoting mitophagy and stabilizing mitochondrial dynamics. Besides, A20 reduces LPS-induced NP cell apoptosis by inhibiting NLRP3 inflammasome-mediated pyroptosis. It provides theoretical support for the reduction of functional NP cell loss in the intervertebral disc through the gene-targeted intervention of A20.


Assuntos
Núcleo Pulposo , Anti-Inflamatórios/farmacologia , Apoptose , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Dinâmica Mitocondrial , Mitofagia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo
2.
Neural Regen Res ; 17(9): 2029-2035, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35142693

RESUMO

Excessive inflammation post-traumatic spinal cord injury (SCI) induces microglial activation, which leads to prolonged neurological dysfunction. However, the mechanism underlying microglial activation-induced neuroinflammation remains poorly understood. Ruxolitinib (RUX), a selective inhibitor of JAK1/2, was recently reported to inhibit inflammatory storms caused by SARS-CoV-2 in the lung. However, its role in disrupting inflammation post-SCI has not been confirmed. In this study, microglia were treated with RUX for 24 hours and then activated with interferon-γ for 6 hours. The results showed that interferon-γ-induced phosphorylation of JAK and STAT in microglia was inhibited, and the mRNA expression levels of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1ß, interleukin-6, and cell proliferation marker Ki67 were reduced. In further in vivo experiments, a mouse model of spinal cord injury was treated intragastrically with RUX for 3 successive days, and the findings suggest that RUX can inhibit microglial proliferation by inhibiting the interferon-γ/JAK/STAT pathway. Moreover, microglia treated with RUX centripetally migrated toward injured foci, remaining limited and compacted within the glial scar, which resulted in axon preservation and less demyelination. Moreover, the protein expression levels of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 were reduced. The neuromotor function of SCI mice also recovered. These findings suggest that RUX can inhibit neuroinflammation through inhibiting the interferon-γ/JAK/STAT pathway, thereby reducing secondary injury after SCI and producing neuroprotective effects.

3.
J Neuroimmunol ; 359: 577688, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390950

RESUMO

Excess inflammatory microglia activation deteriorates the pathological degree of spinal cord injury (SCI). We here employed microglia samples in vitro and murine model in vivo to trace the role of inhibition of Arhgef3 in inflammatory response post SCI. From the specimen analysis of lipopolysaccharide (LPS)-induced inflammatory microglia, we found that Arhgef3 expression was positively relative to microglia activation. In vitro, LPS caused the microglia inflammatory activation and induced upregulation of the Arhgef3 expression. Interestingly, presence of Arhgef3 could activate RhoA through promoting Rho GTPases, but silencing of Arhgef3 decreased RhoA activation and inhibited the microglia inflammation. Moreover, disruption of Arhgef3 inhibited the GTP-RhoA, resulted in a suppression of proinflammatory cytokines, and alleviated the LPS-elicited inflammatory genes expression. Moreover, artificially decreasing Arhgef3 expression remarkedly reduced ROS generation after LPS treatment. In vivo of a mouse mechanical contusion-induced SCI model, inhibition of Arhgef3 reduced the ratio of GTP-RhoA/Total-RhoA, and prevented SCI via mitigating the microglial inflammatory phenotype and decreased secondary neurological injury. Besides, inhibition of Arhgef3 prevented alleviated the degree of demyelination but did not affect neuronal regeneration. Meaningfully, absence of Arhgef3 improved mouse locomotor recovery post SCI. Taken together, Arhgef3 involves the microglial activation and inflammatory response following neural injury, and targeted disrupting of which may indicate a promising therapeutic direction in preventing SCI.


Assuntos
Microglia/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/biossíntese , Traumatismos da Medula Espinal/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Traumatismos da Medula Espinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...