Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11478-11483, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496958

RESUMO

Design of two-dimensional (2D) multiferroic materials with two or more ferroic orders in one structure is highly desired in view of the development of next-generation electronic devices. Unfortunately, experimental or theoretical discovery of 2D intrinsic multiferroic materials is rare. Using first-principles calculation methods, we report the realization of multiferroics that couple ferromagnetism and ferroelectricity by intercalating Cu atoms in bilayer CrI3, Cux@bi-CrI3 (x = 0.03, 0.06, and 0.25). Our results show that the intercalation of Cu atoms leads to the inversion symmetry breaking of bilayer CrI3 and produces intercalation density-dependent out-of-plane electric polarization, around 18.84-90.31 pC·cm-2. Moreover, the switch barriers of Cux@bi-CrI3 in both polarization states are small, ranging from 0.31 to 0.69 eV. Furthermore, the magnetoelectric coupling properties of Cux@bi-CrI3 can be modulated via varying the metal ion intercalation density, and half-metal to semiconductor transition can be occurred by decreasing the intercalation density of metal ions. Our work paves a practical path for 2D magnetoelectron coupling devices.

2.
RSC Adv ; 13(50): 35018-35025, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38046632

RESUMO

The coupling of hetero monolayers into van der Waals (vdW) heterostructures has become an effective way to obtain tunable physical and chemical properties of two dimensional (2D) materials. In this work, based on first principles calculations, we systematically explore the electronic and magnetic properties of a 2D VOCl2/PtTe2 heterostructure. Our results indicate that the ground state of the VOCl2/PtTe2 heterostructure is a ferromagnetic (FM) metal with large magnetic anisotropy energy, among which, the VOCl2 "sublayer" shows FM half metallic properties while the PtTe2 "sublayer" shows nonmagnetic metallic properties. The Curie temperature (TC) of VOCl2/PtTe2 is 111 K. Moreover, the FM-antiferromagnetic (AFM) phase transition can be obtained under biaxial strain. Our work provides an effective way to improve the performance of 2D monolayers in nano-electronic devices.

3.
Opt Express ; 29(23): 38488-38496, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808901

RESUMO

In research on hybrid quantum networks, visible or near-infrared frequency conversion has been realized. However, technical limitations mean that there have been few studies involving the ultraviolet band, and unfortunately the wavelengths of the rare-earth or alkaline-earth metal atoms or ions that are used widely in research on quantum information are often in the UV band. Therefore, frequency conversion of the ultraviolet band is very important. In this paper, we demonstrate a quantum frequency conversion between ultraviolet and visible wavelengths by fabricating waveguides in a period-poled MgO:LiTaO3 crystal with a laser writing system, which will be used to connect the wavelength of the dipole transition of 171Yb+ at 369.5 nm and the absorption wavelength of Eu3+ at 580 nm in a solid-state quantum memory system. An external conversion efficiency of 0.85% and a signal-to-noise ratio of greater than 500 are realized with a pumping power of 3.28 W at 1018 nm. Furthermore, we complete frequency conversion of the classical polarization state by means of a symmetric optical setup based on the fabricated waveguide, and the process fidelity of the conversion is (96.13 ± 0.021)%. This converter paves the way for constructing a hybrid quantum network and realizing a quantum router in the ultraviolet band in the future.

4.
Opt Express ; 29(16): 24674-24683, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614818

RESUMO

We demonstrate a laser frequency stabilization method with large tuning range to stabilize a UV laser by installing piezoelectric ceramic actuators into a Fabry-Pérot cavity with an ultra-low expansion spacer. To suppress piezoelectric drift, a two-layer symmetrical structure is adopted for the piezoelectric actuator, and a 14.7 GHz tuning range is achieved. The short-term drift of the piezoelectric ceramics caused by temperature and creep is eliminated, and the long-term drift is 0.268 MHz/h when the Fabry-Pérot cavity is sealed in a chamber without a vacuum environment. The long-term frequency drift is mainly caused by stress release and is eliminated by compensating the cavity voltage with an open loop. Without the need for an external reference or a vacuum environment, the laser frequency stabilization system is greatly simplified, and it can be extended to wavelengths ranging from ultraviolet to infrared. Owing to its simplicity, stability, and large tuning range, it is applicable in cold atom and trapped ion experiments.

5.
Rev Sci Instrum ; 92(7): 073201, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340438

RESUMO

Optical controls provided by lasers are the most important and essential techniques in trapped ion and cold atom systems. It is crucial to increase the optical accessibility of the setup to enhance these optical capabilities. Here, we present the design and construction of a new segmented-blade ion trap integrated with a compact glass vacuum cell, in place of the conventional bulky metal vacuum chamber. The distance between the ion and four outside surfaces of the glass cell is 15 mm, which enables us to install four high-numerical-aperture (NA) lenses (with two NA ⩽ 0.32 lenses and two NA ⩽ 0.66 lenses) in two orthogonal transverse directions, while leaving enough space for laser beams in the oblique and longitudinal directions. The high optical accessibility in multiple directions allows the application of small laser spots for addressable Raman operations, programmable optical tweezer arrays, and efficient fluorescence collection simultaneously. We have successfully loaded and cooled a string of 174Yb+ and 171Yb+ ions in the trap, which verifies the trapping stability. This compact high-optical-access trap setup not only can be used as an extendable module for quantum information processing but also facilitates experimental studies on quantum chemistry in a cold hybrid ion-atom system.

6.
Phys Rev Lett ; 127(26): 263603, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029497

RESUMO

In cold atomic systems, fast and high-resolution microscopy of individual atoms is crucial, since it can provide direct information on the dynamics and correlations of the system. Here, we demonstrate nanosecond-scale two-dimensional stroboscopic pictures of a single trapped ion beyond the optical diffraction limit, by combining the main idea of ground-state depletion microscopy with quantum-state transition control in cold atoms. We achieve a spatial resolution up to 175 nm using a NA=0.1 objective in the experiment, which represents a more than tenfold improvement compared with direct fluorescence imaging. To show the potential of this method, we apply it to observe the secular motion of the trapped ion; we demonstrate a temporal resolution up to 50 ns with a displacement detection sensitivity of 10 nm. Our method provides a powerful tool for probing particle positions, momenta, and correlations, as well as their dynamics in cold atomic systems.

7.
Sci Bull (Beijing) ; 64(23): 1757-1763, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659534

RESUMO

The geometric phase is regarded as a promising strategy in fault tolerance quantum information processing (QIP) domain due to its phase only depending on the geometry of the path executed. However, decoherence caused by environmental noise will destroy the geometric phase. Traditional dynamic decoupling sequences can eliminate dynamic dephasing but can not reduce residual geometric dephasing, which is still vital for high-precision quantum manipulation. In this work, we experimentally demonstrate effective suppression of residual geometric dephasing with modified dynamic decoupling schemes, using a single trapped 171Yb+ ion. The experimental results show that the modified schemes can reduce dephasing rate up to more than one order of magnitude compared with traditional dynamic decoupling schemes, where residual geometric dephasing dominates. Besides, we also investigate the impact of intensity and correlation time of the low-frequency noise on coherence of the quantum system. And we confirm these methods can be used in many cases.

8.
Molecules ; 22(1)2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28036030

RESUMO

Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR) and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Propiofenonas/farmacologia , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/farmacologia , Humanos , Humulus/química , Células MCF-7 , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas
9.
Molecules ; 20(1): 754-79, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25574819

RESUMO

The female inflorescences of hops (Humulus lupulus L.), a well-known bittering agent used in the brewing industry, have long been used in traditional medicines. Xanthohumol (XN) is one of the bioactive substances contributing to its medical applications. Among foodstuffs XN is found primarily in beer and its natural occurrence is surveyed. In recent years, XN has received much attention for its biological effects. The present review describes the pharmacological aspects of XN and summarizes the most interesting findings obtained in the preclinical research related to this compound, including the pharmacological activity, the pharmacokinetics, and the safety of XN. Furthermore, the potential use of XN as a food additive considering its many positive biological effects is discussed.


Assuntos
Flavonoides/farmacologia , Humulus/química , Propiofenonas/farmacologia , Animais , Flavonoides/efeitos adversos , Flavonoides/farmacocinética , Aditivos Alimentares/efeitos adversos , Aditivos Alimentares/farmacocinética , Aditivos Alimentares/farmacologia , Células Hep G2 , Humanos , Propiofenonas/efeitos adversos , Propiofenonas/farmacocinética , Ratos
10.
J Agric Food Chem ; 62(24): 5548-54, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24897556

RESUMO

Xanthohumol (XN) is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. XN alleviates hyperglycemia and has potential usage in the treatment of type 2 diabetes. In the present study, a series of in vitro experiments were performed to investigate whether XN was an effective inhibitor of α-glucosidase. The results showed that XN inhibited α-glucosidase in a reversible and noncompetitive manner, with an IC50 value of 8.8 µM and that XN inhibited the release of glucose from the maltose in the apical side of the Caco-2 cell monolayer. Fluorescence and circular dichroism spectra results indicated that XN directly bound to α-glucosidase and induced minor conformational changes of the enzyme. These results demonstrated that XN is a promising α-glucosidase inhibitor, which therefore could be used as functional food to alleviate postprandial hyperglycemia and as a potential candidate for the development of an antidiabetic agent.


Assuntos
Cerveja/análise , Chalcona/química , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Humulus/química , Prenilação , Propiofenonas/farmacologia , Células CACO-2 , Glucose/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...