Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2406844, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370664

RESUMO

The urgent need for sustainable energy storage drives the fast development of diverse hydrogen production based on clean water resources. Herein, a unique type of multi-bioinspired functional device (MFD) is reported with asymmetric wettability that combines the curvature gradient of cactus spines, the wetting gradient of lotus, and the slippery surface of Nepenthes alata for efficient fog harvesting. The precisely printed MFDs with microscale features, spanning dimensions, and a thin wall are endowed with asymmetric wettability to enable the Janus effects on their surfaces. Fog condenses on the superhydrophobic surface of the MFDs in the form of microdroplets and unidirectionally penetrates its interior due to the Janus effects, and drops onto the designated area with a better fog harvesting rate of 10.64 g cm-2 h-1. Most significantly, the collected clean water can be used for hydrogen production with excellent stability and durability. The findings demonstrate that safe, large-scale, high-performance water splitting and gas separation and collection with fog collection based on MFDs are possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA