Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38920520

RESUMO

Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and power (CCP) system, incorporating an externally fired gas turbine (EFGT), steam Rankine cycle (SRC), absorption refrigeration cycle (ARC), and organic Rankine cycle (ORC), aimed at boosting the efficiency of biomass integrated gasification combined cycle systems. Through the development of mathematical models, this research evaluates the system's performance from both thermodynamic and exergoeconomic perspectives. Results show that the system could achieve the thermal efficiency, exergy efficiency, and levelized cost of exergy (LCOE) of 70.67%, 39.13%, and 11.67 USD/GJ, respectively. The analysis identifies the combustion chamber of the EFGT as the component with the highest rate of exergy destruction. Further analysis on parameters indicates that improvements in thermodynamic performance are achievable with increased air compressor pressure ratio and gas turbine inlet temperature, or reduced pinch point temperature difference, while the LCOE can be minimized through adjustments in these parameters. Optimized operation conditions demonstrate a potential 5.7% reduction in LCOE at the expense of a 2.5% decrease in exergy efficiency when compared to the baseline scenario.

2.
Entropy (Basel) ; 24(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359627

RESUMO

Adding nanoparticles or surfactants to pure working fluid is a common and effective method to improve the heat transfer performance of pool boiling. The objective of this research is to determine whether additives have the same efficient impact on heat transfer enhancement of the non-azeotropic mixture. In this paper, Ethylene Glycol/Deionized Water (EG/DW) was selected as the representing non-azeotropic mixture, and a comparative experiment was carried out between it and the pure working fluid. In addition, the effects of different concentrations of additives on the pool boiling heat transfer performance under different heat fluxes were experimentally studied, including TiO2 nanoparticles with different particle diameters, different kinds of surfactants, and mixtures of nanofluids and surfactants. The experimental results showed that the nanoparticles deteriorated the heat transfer of the EG/DW solution, while the surfactant enhanced the heat transfer of the solution when the concentration closed to a critical mass fraction (CMC). However, the improvement effect was unsteady with the increase in the heat flux density. The experimental results suggest that the mass transfer resistance of the non-azeotropic mixture is the most important factor in affecting heat transfer enhancement. Solutions with 20 nm TiO2 obtained a steady optimum heat transfer improvement by adding surfactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...