Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 186: 114372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729730

RESUMO

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Oxirredução , Aldeídos/química , Aldeídos/análise , Palmitatos/química , Ácido Palmítico/química , Cetonas/química , Ácidos Carboxílicos/química
2.
J Agric Food Chem ; 72(1): 704-714, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131267

RESUMO

The impact of the oxidation of linoleic acid cannot be overlooked in daily food consumption. This study used gas chromatography-mass spectrometry (GC-MS) to identify both nonvolatile oxidation products and volatile oxidation products of methyl linoleic acid at 180 °C and density function theory to investigate oxidation mechanisms. An analysis of nonvolatile oxidation products revealed the presence of three primary oxidation products. The three primary oxidation products were identified as hydroperoxides, peroxide-linked dimers, and heterocyclic compounds in a ratio of 2.70:1:3.69 (mmol/mmol/mmol). The volatile components of secondary oxidation products were found including aldehydes (40.77%), alkanes (19.89%), alcohols (9.02%), furans (6.11%), epoxides (0.46%), and acids (2.50%). DFT calculation proved that the secondary oxidation products mainly came from peroxides (77%). Finally, we look forward to our research contributing positively to lipid autoxidation and human health.


Assuntos
Aldeídos , Ácido Linoleico , Humanos , Temperatura , Oxirredução , Cromatografia Gasosa-Espectrometria de Massas , Aldeídos/química , Ácidos Linoleicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...