Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 117(17): 5073-80, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23565965

RESUMO

Crystalline vesicles are promising nanomaterials due to their mechanical stability in various environments. To control their fabrication, it is essential to understand the effects of different experimental conditions on crystallization. Here we perform atomistic molecular dynamics simulations of anionic lipid membranes of 1,2-dilauroyl-sn-glycero-3-phosphol-L-serine. In the presence of Na(+) monovalent counterions, we access the phase transition from the liquid-like disordered liquid-crystalline phase to the ordered gel phase by lowering the temperature of the system. The phase transition is conclusively evidenced by the scattering structure factor. Quantitative calculations show that the enhancement of the intertail van der Waals interaction (about -6 k(B)T) plays a dominant role in driving the phase transition rather than the increase in the cohesive interaction (-0.5 k(B)T) between lipids and counterions. Meanwhile, in the presence of multivalent counterions of Zn(2+) or La(3+) the gel phase is found throughout the temperature range investigated. Moreover, the van der Waals interaction per hydrocarbon group is ∼20% stronger in the gel phase (∼ -1.8 k(B)T regardless of the counterions) than in the liquid-crystalline phase (-1.5 k(B)T).


Assuntos
Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Ânions/química , Cristalização , Lantânio/química , Transição de Fase , Fosfatidilserinas/química , Sódio/química , Eletricidade Estática , Temperatura , Zinco/química
2.
ACS Nano ; 6(12): 10901-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23185994

RESUMO

Coassembled molecular structures are known to exhibit a large variety of geometries and morphologies. A grand challenge of self-assembly design is to find techniques to control the crystal symmetries and overall morphologies of multicomponent systems. By mixing +3 and -1 ionic amphiphiles, we assemble crystalline ionic bilayers in a large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. We combine TEM with SAXS and WAXS to characterize the coassembled structures from the mesoscopic to nanometer scale. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions are controlled by varying pH. At low and high pH values, we observe closed, faceted vesicles with two-dimensional hexagonal molecular arrangements, and at intermediate pH, we observe ribbons with rectangular-C packing. Furthermore, as pH increases, we observe interdigitation of the bilayer leaflets. Accurate atomistic molecular dynamics simulations explain the pH-dependent bilayer thickness changes and also reveal bilayers of hexagonally packed tails at low pH, where only a small fraction of anionic headgroups is charged. Coarse-grained simulations show that the mesoscale geometries at low pH are faceted vesicles where liquid-like edges separate flat crystalline domains. Our simulations indicate that the curved-to-polyhedral shape transition can be controlled by tuning the tail density in regions where sharp bends can form the polyhedral edges. In particular, the pH acts to control the overall morphology of the ionic bilayers by changing the local crystalline order of the amphiphile tails.


Assuntos
Membrana Celular/química , Simulação de Dinâmica Molecular , Cristalização , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Conformação Molecular , Eletricidade Estática
3.
Phys Chem Chem Phys ; 14(32): 11425-32, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22801605

RESUMO

We study the static and dynamic properties of water near a poly(styrene sulfonate)/poly(diallyldimethylammonium) (PSS/PDADMA) bilayer adsorbed onto a substrate by atomistic molecular dynamics simulations. Qualitative changes in the dynamics of water in the proximity of the adsorbed bilayer are observed - such as in the lateral diffusion, residence time and hydrogen-bonding lifetime - as compared with water in the presence of the bare substrate. Static properties of water are similarly influenced, and a high polarization of water molecules is found to be present surprisingly far from the adsorbed bilayer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...