Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134879, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876021

RESUMO

Legacy and emerging PFAS in the air, wastewater, and sludge from two wastewater treatment plants (WWTPs) in Tianjin were investigated in this study. The semi-quantified nontarget PFAS accounted for up to 99 % of Æ©PFAS in the gas phase, and aqueous film-forming foam (AFFF)-related PFAS were predominant in wastewater (up to 2250 ng/L, 79 % of Æ©PFAS) and sludge (up to 4690 ng/g, 95 % of Æ©PFAS). Furthermore, field-derived air particle-gas, air-wastewater, and wastewater particle-wastewater distribution coefficients of emerging PFAS are characterized, which have rarely been reported. The emerging substitute p-perfluorous nonenoxybenzenesulfonate (OBS) and AFFF-related cationic and zwitterionic PFAS show a stronger tendency to partition into particle phase in air and wastewater than perfluorooctane sulfonic acid (PFOS). The estimated total PFAS emissions from the effluent and sludge of WWTP A were 202 kg/y and 351 kg/y, respectively. While the target PFAS only accounted for 20-33 % of the total emissions, suggesting a significant underestimation of environmental releases of the nontarget PFAS and unknown perfluoroalkyl acid precursors through the wastewater and sludge disposal. Overall, this study highlights the importance of comprehensive monitoring and understanding the behavior of legacy and emerging PFAS in wastewater systems, and fills a critical gap in our understanding of PFAS exposure.

2.
Environ Sci Technol ; 58(5): 2446-2457, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38178542

RESUMO

The 6:2 fluorotelomer sulfonamide (6:2 FTSAm)-based compounds signify a prominent group of per- and polyfluoroalkyl substances (PFAS) widely used in contemporary aqueous film-forming foam (AFFF) formulations. Despite their widespread presence, the biotransformation behavior of these compounds in wastewater treatment plants remains uncertain. This study investigated the biotransformation of 6:2 FTSAm-based amine oxide (6:2 FTNO), alkylbetaine (6:2 FTAB), and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) in aerobic sludge over a 100-day incubation period. The biotransformation of 6:2 fluorotelomer sulfonamide alkylamine (6:2 FTAA), a primary intermediate product of 6:2 FTNO, was indirectly assessed. Their stability was ranked based on the estimated half-lives (t1/2): 6:2 FTAB (no obvious products were detected) ≫ 6:2 FTSA (t1/2 ≈28.8 days) > 6:2 FTAA (t1/2 ≈11.5 days) > 6:2 FTNO (t1/2 ≈1.2 days). Seven transformation products of 6:2 FTSA and 15 products of 6:2 FTNO were identified through nontarget and suspect screening using high-resolution mass spectrometry. The transformation pathways of 6:2 FTNO and 6:2 FTSA in aerobic sludge were proposed. Interestingly, 6:2 FTSAm was hardly hydrolyzed to 6:2 FTSA and further biotransformed to perfluoroalkyl carboxylic acids (PFCAs). Furthermore, the novel pathways for the generation of perfluoroheptanoic acid (PFHpA) from 6:2 FTSA were revealed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Esgotos/química , Óxidos , Aminas , Fluorocarbonos/análise , Biotransformação , Sulfonamidas/metabolismo , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 57(48): 20127-20137, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37800548

RESUMO

Wastewater treatment plants (WWTPs) are typical point sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. The suspect and nontarget screening based on gas chromatography or liquid chromatography-high resolution mass spectrometry were performed on atmosphere, wastewater, and sludge samples collected from two WWTPs in Tianjin to discover emerging PFAS and their fate in this study. A total of 40 PFAS (14 neutral and 26 ionic) and 64 PFAS were identified in the atmosphere and wastewater/sludge, respectively, among which 5 short-chain perfluoroalkyl sulfonamide derivatives, 4 ionic PFAS, and 15 aqueous film-forming foam-related cationic or zwitterionic PFAS have rarely or never been reported in WWTPs in China. Active air sampling is more conducive to the enrichment of emerging PFAS, while passive sampling is inclined to leave out some ultrashort-chain PFAS or unstable transformation intermediates. Moreover, most precursors and intermediates could be enriched in the atmosphere at night, while the PFAS associated with aerosols with high water content or particles enter the atmosphere easily during the day. Although most emerging PFAS could not be eliminated efficiently in conventional treatment units, deep bed filtration and advanced oxidation processes could partly remove some emerging precursors.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos/análise , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Água , China
4.
J Hazard Mater ; 460: 132411, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666171

RESUMO

The objectives of this study were to identify both legacy and emerging per- and polyfluoroalkyl substances (PFAS) from three typical fluoridated industrial parks (FIPs) in China, and to assess their environmental occurrence and fate. Complementary suspect target and nontarget screening were implemented, and a total of 111 emerging PFAS were identified. Based on the multi-mass scale analysis, 25 emerging PFAS were identified for the first time, including 24 per- and polyfluoroalkyl ether carboxylic acids (PFECAs) and 1 ultra-short chlorinated perfluoroalkyl carboxylic acids (Cl-PFCAs, C2), with a maximum percentage of 48.2 % in nontarget PFAS (exclude target PFAS). The composition of PFAS identified in different media was influenced by functional groups, carbon chain length, substituents and ether bond insertion, with poly-hydrogen substituted being preferably in water and a more diverse pattern of PFECAs in sediments. The patterns of PFAS homologs revealed distinct differences among the three typical FIPs in the shift of PFAS production patterns. The C4-PFAS and short-chain carboxylic acids (≤C6) were the main PFAS in the Fuxin and Changshu, respectively. In contrast, perfluorooctanoic acid (PFOA, C8) remained dominant in Zibo, and the highest point concentrations in water and sediment were up to 706 µg/L and 553 µg/g, respectively.

5.
Environ Sci Technol ; 57(25): 9416-9425, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294550

RESUMO

Electrochemical oxidation (EO) has been shown to have the unique ability to degrade perfluorooctanoic acid (PFOA), although the radical chemistry involved in this degradation is unclear, particularly in the presence of chloride ions (Cl-). In this study, reaction kinetics, free radical quenching, electron spin resonance, and radical probes were used to examine the roles of ·OH and reactive chlorine species (RCS, including Cl·, Cl2•-, and ClO·) in the EO of PFOA. Using EO in the presence of NaCl, PFOA degradation rates of 89.4%-94.9% and defluorination rates of 38.7%-44.1% were achieved after 480 min with PFOA concentrations ranging from 2.4 to 240 µM. The degradation occurred via the synergistic effect of ·OH and Cl· rather than through direct anodic oxidation. The degradation products and density functional theory (DFT) calculations revealed that Cl· triggered the first step of the reaction, thus the initial direct electron transfer was not the rate-limiting step of PFOA degradation. The change in Gibbs free energy of the reaction caused by Cl· was 65.57 kJ mol-1, which was more than two times lower than that triggered by ·OH. However, ·OH was involved in the subsequent degradation of PFOA. The synergistic effect of Cl· and ·OH in PFOA degradation is demonstrated for the first time in this study, which is promising for the development of electrochemical technology to remove perfluorinated alkyl substances from the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Cloro , Cloretos , Oxirredução , Caprilatos/química , Poluentes Químicos da Água/química
6.
J Hazard Mater ; 451: 131204, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931218

RESUMO

Occupational exposure to per- and polyfluoroalkyl substances (PFASs) is of serious concern because their adverse health effects. Nevertheless, knowledge regarding contamination in e-waste dismantling regions is rather scarce. We therefore analysed seven neutral PFASs (n-PFASs) and forty ionized PFASs (i-PFASs) in dust and hand wipes collected from an e-waste dismantling plant and homes. Both dust (1370 ng/g) and workers' hand wipe (1100 ng/m2) in e-waste dismantling workshops contained significantly higher median levels of ∑PFASs than those from homes (684 ng/g and 444 ng/m2) (p < 0.01). ∑PFAS concentrations in dust and on workers' hand wipes from workshops were significantly higher than those from storage area. 8:2 fluorotelomer alcohol was the dominant n-PFAS in workshop dust (70.7%) and on worker's hand wipes (46.6%). Perfluoroalkyl carboxylic acids (C2 -C3) were the significant components (based on concentration) of i-PFASs in dust (57.9%) and on hand wipes (89.6%). A significant positive correlation (p < 0.001) of ∑PFAS concentrations between workshop dust and workers' hand wipes was observed, indicating that they come from common sources. Compared to dust ingestion, hand-to-mouth contact was highlighted as a vital exposure route, accounting for 68.8% for workers and 72.2% for residential population, respectively, of the sum of two exposure doses.


Assuntos
Resíduo Eletrônico , Fluorocarbonos , Exposição Ocupacional , Humanos , Resíduo Eletrônico/análise , Fluorocarbonos/análise , Exposição Ocupacional/análise , Poeira/análise , Ácidos Carboxílicos/análise , Monitoramento Ambiental , Exposição Ambiental/análise , China
7.
Huan Jing Ke Xue ; 44(3): 1214-1227, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922184

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have attracted extensive attention because of their persistence, long-distance migration ability, bioaccumulation, and biological toxicity. Currently, regulatory strategies concerning PFASs in the environment primarily focus on perfluoroalkyl acids (PFAAs). However, most polyfluoroalkyl compounds can be degraded to PFAAs by environmental microorganisms, also known as precursors. Exploring the microbial transformation behavior of precursors is fundamental to comprehensively evaluate the environmental risk of PFASs and formulate control and remediation schemes of PFAS-contaminated sites. Furthermore, anaerobic microbial reductive defluorination of PFAAs is a potential and challenging remediation technology. This review summarizes degradation rules and transformation pathways of precursors (fluorotelomer compounds and perfluorooctane sulfonamide derivatives), PFAAs, and novel PFASs by microorganisms and discusses factors affecting the microbial degradation. Finally, the future research directions are put forward.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/metabolismo
8.
Sci Total Environ ; 768: 144945, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736326

RESUMO

In the present study, the uptake and translocation mechanisms of phthalate esters (PAEs) and their primary mono esters metabolites (mPAEs), and the mechanisms of PAEs metabolism in plants were elucidated. The objectives of this study were to: (i) elucidate the fractionation of PAEs and mPAEs in Chinese cabbage (Brassica rapa var. chinensis) by hydroponic experiment, (ii) investigate the PAEs and mPAEs uptake mechanisms in root by inhibitor experiments, (iii) explain the molecular mechanisms of PAE interactions with the plant macromolecules by proteomics analysis and molecular docking, and (iv) reveal the involvement of carboxylesterase in the plant metabolism of PAEs. The results demonstrated that both the apoplastic and symplastic pathways contributed to the uptake of di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP) by vacuum-infiltration-centrifugation method. The energy-dependent active process was involved for the uptake of DnBP, DEHP, MnBP, and MEHP. The passive uptake pathways of anion mPAEs and neutral PAEs differ. Aquaporins contributed to the uptake of anion MnBP and MEHP, and slow-type anion channel was also responsible for the uptake of anion MEHP. Molecular interactions of PAEs and macromolecules were further characterized by proteomic analysis and molecular docking. PAEs were transferred via non-specific lipid transfer protein by binding hydroponic amino acid residues. The carboxylesterase enzyme was attributed to the metabolism of PAEs to form mPAEs by using crude enzyme extract and commercial pure enzyme. This study provides both experimental and theoretical evidence for uptake, accumulation, and metabolism of PAEs in plants.


Assuntos
Brassica rapa , Brassica , Dietilexilftalato , Ácidos Ftálicos , China , Dibutilftalato , Ésteres , Simulação de Acoplamento Molecular , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...