Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 8: 393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509728

RESUMO

During CO2 flooding, serious gas channeling occurs in ultra-low permeability reservoirs due to the high mobility of CO2. The chief end of this work was to research the application of responsive nanoparticles for mobility control to enhance oil recovery. Responsive nanoparticles were developed based on the modification of nano-silica (SiO2) by 3-aminopropyltrimethoxysilane (KH540) via the Eschweiler-Clark reaction. The proof of concept for responsive nanoparticles was investigated by FT-IR, 1H-NMR, TEM, DLS, CO2/N2 response, wettability, plugging performance, and core flooding experiments. The results indicated that responsive nanoparticles exhibited a good response to control nanoparticle dispersity due to electrostatic interaction. Subsequently, responsive nanoparticles showed a better plugging capacity of 93.3% to control CO2 mobility, and more than 26% of the original oil was recovered. Moreover, the proposed responsive nanoparticles could revert oil-wet surfaces to water-wet, depending on surface adsorption to remove the oil from the surface of the rocks. The results of this work indicated that responsive nanoparticles might have potential applications for improved oil recovery in ultra-low permeability reservoirs.

2.
Front Chem ; 8: 146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32181243

RESUMO

To improve CO2 adsorption performance of nanoparticle absorbents, a novel tertiary amine functionalized nano-SiO2 (NS-NR2) was synthesized based on the 3-aminopropyltrimethoxysilane (KH540) modified nano-SiO2 (NS-NH2) via methylation. The chemical structure and performances of the NS-NR2 were characterized through a series of experiments, which revealed that NS-NR2 can react with CO2 in water and nanofluid with low viscosity revealed better CO2 capture. The CO2 capture mechanism of NS-NR2 was studied by kinetic models. From the correlation coefficient, the pseudo second order model was found to fit well with the experiment data. The influencing factors were investigated, including temperature, dispersants, and cycling numbers. Results has shown the additional surfactant to greatly promote the CO2 adsorption performance of NS-NR2 because of the better dispersity of nanoparticles. This work proved that NS-NR2 yields low viscosity, high capacity for CO2 capture, and good regenerability in water. NS-NR2 with high CO2 capture will play a role in storing CO2 to enhanced oil recovery in CO2 flooding.

3.
Polymers (Basel) ; 11(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514371

RESUMO

To improve oil recovery significantly in low-mid permeability reservoirs, a novel modified nano-SiO2 hyperbranched copolymer (HPBS), consisting of polyacrylamide as hydrophilic branched chains and modified nano-SiO2 as the core, was synthesized via an in situ free radical polymerization reaction. The structure and properties of the hyperbranched copolymer were characterized through a range of experiments, which showed that HBPS copolymers have better stability and enhanced oil recovery (EOR) capacity and also smaller hydrodynamic radius in comparison with hydrolyzed polyacrylamide (HPAM). The flooding experiments indicated that when a 1000 mg/L HPBS solution was injected, the resistance factor (RF) and residual resistance factor (RRF) increased after the injection. Following a 98% water cut after preliminary water flooding, 0.3 pore volume (PV) and 1000 mg/L HPBS solution flooding and extended water flooding (EWF) can further increase the oil recovery by 18.74% in comparison with 8.12% oil recovery when using HPAM. In this study, one can recognize that polymer flooding would be applicable in low-mid permeability reservoirs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...