Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Med ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809765

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) intricately involves disrupted lipid metabolism. Exosomes emerge as carriers of biomarkers for early diagnosis and monitoring. This study aims to identify lipid metabolites in serum exosomes for T2DM diagnosis. METHODS: Serum samples were collected from newly diagnosed T2DM patients and age and body mass index-matched healthy controls. Exosomes were isolated using exosome isolation reagent, and untargeted/targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and validate altered lipid metabolites. Receiver operating characteristic curve analysis was used to evaluate the diagnostic value of candidate lipid metabolites. RESULTS: Serum exosomes were successfully isolated from both groups, with untargeted LC-MS/MS revealing distinct lipid metabolite alterations. Notably, phosphatidylethanolamine (PE) (22:2(13Z,16Z)/14:0) showed stable elevation in T2DM-serum exosomes. Targeted LC-MS/MS confirmed significant increase of PE (22:2(13Z,16Z)/14:0) in T2DM exosomes but not in serum. PE (22:2(13Z,16Z)/14:0) levels not only positively correlated with hemoglobin A1C levels and blood glucose levels, but also effectively distinguished T2DM patients from healthy individuals (area under the curve = 0.9141). CONCLUSION: Our research sheds light on the importance of serum exosome lipid metabolites in diagnosing T2DM, providing valuable insights into the complex lipid metabolism of diabetes.

3.
Nutrients ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960353

RESUMO

Psychobiotics, a newly identified category of probiotics primarily targeting the gut-brain axis, exhibit tremendous potential in improving sleep quality. In this study, the clinical trial was registered in advance (identifier: NO. ChiCTR2300067806). Forty participants who were diagnosed with stress-induced insomnia were chosen and randomly divided into two groups: one received CCFM1025 at a dose of 5 × 109 CFU (n = 20), while the other was administered a placebo (n = 20), over a period of four weeks. The results revealed that compared to the placebo group (pre: M = 10.10, SD = 2.292; post: M = 8.650, SD = 2.793; pre vs. post: F (1, 38) = 15.41, p = 0.4316), the CCFM1025-treated group exhibited a significant decrease in Pittsburgh Sleep Quality Index (PSQI) scores from baseline (pre: M = 11.60, SD = 3.169; post: M = 7.750, SD = 3.697, F (1, 38) = 15.41, p = 0.0007). Furthermore, the administration of CCFM1025 was associated with a more pronounced reduction in stress marker concentrations. This effect could potentially be linked to changes in serum metabolites induced by the probiotic treatment, notably daidzein. In conclusion, B. breve CCFM1025 demonstrates promise as a psychobiotic strain for enhancing sleep quality.


Assuntos
Bifidobacterium breve , Probióticos , Distúrbios do Início e da Manutenção do Sono , Humanos , Qualidade do Sono , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Probióticos/uso terapêutico , Método Duplo-Cego
4.
Front Cell Dev Biol ; 10: 812262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178389

RESUMO

Diabetic foot ulcer has become a worldwide clinical medical challenge as traditional treatments are not effective enough to reduce the amputation rate. Therefore, it is of great social significance to deeply study the pathogenesis and biological characteristics of the diabetic foot, explore new treatment strategies and promote their application. Stem cell-based therapy holds tremendous promise in the field of regenerative medicine, and its mechanisms include promoting angiogenesis, ameliorating neuroischemia and inflammation, and promoting collagen deposition. Studying the specific molecular mechanisms of stem cell therapy for diabetic foot has an important role and practical clinical significance in maximizing the repair properties of stem cells. In addition, effective application modalities are also crucial in order to improve the survival and viability of stem cells at the wound site. In this paper, we reviewed the specific molecular mechanisms of stem cell therapy for diabetic foot and the extended applications of stem cells in recent years, with the aim of contributing to the development of stem cell-based therapy in the repair of diabetic foot ulcers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...