Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2689, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538612

RESUMO

The applications of silica-based glass have evolved alongside human civilization for thousands of years. High-precision manufacturing of three-dimensional (3D) fused silica glass objects is required in various industries, ranging from everyday life to cutting-edge fields. Advanced 3D printing technologies have emerged as a potent tool for fabricating arbitrary glass objects with ultimate freedom and precision. Stereolithography and femtosecond laser direct writing respectively achieved their resolutions of ~50 µm and ~100 nm. However, fabricating glass structures with centimeter dimensions and sub-micron features remains challenging. Presented here, our study effectively bridges the gap through engineering suitable materials and utilizing one-photon micro-stereolithography (OµSL)-based 3D printing, which flexibly creates transparent and high-performance fused silica glass components with complex, 3D sub-micron architectures. Comprehensive characterizations confirm that the final material is stoichiometrically pure silica with high quality, defect-free morphology, and excellent optical properties. Homogeneous volumetric shrinkage further facilitates the smallest voxel, reducing the size from 2.0 × 2.0 × 1.0 µm3 to 0.8 × 0.8 × 0.5 µm3. This approach can be used to produce fused silica glass components with various 3D geometries featuring sub-micron details and millimetric dimensions. This showcases promising prospects in diverse fields, including micro-optics, microfluidics, mechanical metamaterials, and engineered surfaces.

2.
ACS Appl Mater Interfaces ; 14(42): 48276-48284, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36228148

RESUMO

Flexible multidirectional strain sensors capable of simultaneously detecting strain amplitudes and directions have attracted tremendous interest. Herein, we propose a flexible multidirectional strain sensor based on a newly designed single-layer hierarchical aligned micro-/nanowire (HAMN) network. The HAMN network is efficiently fabricated using a one-step femtosecond laser patterning technology based on a modulated line-shaped beam. The anisotropic performance is attributed to the significantly different morphological changes caused by an inhomogeneous strain redistribution among the HAMN network. The fabricated strain sensor exhibits high sensitivity (gauge factor of 65 under 2.5% strain and 462 under larger strains), low response/recovery time (140 and 322 ms), and good stability (over 1000 cycles). Moreover, this single-layer strain sensor with high selectivity (gauge factor differences of ∼73 between orthogonal strains) is capable of distinguishing multidimensional strains and exhibits decoupled responses under low strains (<1%). Therefore, the strain sensors enable the precise monitoring of subtle movements, including radial pulses and wrist bending, and the rectification of pen-holding posture. Benefitting from these remarkable performances, the HAMN-based strain sensors show potential applications, including healthcare and complex human motion monitoring.

3.
Nano Lett ; 22(15): 6223-6228, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35849492

RESUMO

This paper proposes a one-step maskless 2D nanopatterning approach named self-aligned plasmonic lithography (SPL) by line-shaped ultrafast laser ablation under atmospheric conditions for the first time. Through a theoretical calculation of electric field and experimental verification, we proved that homogeneous interference of laser-excited surface plasmon polaritons (SPPs) can be achieved and used to generate long-range ordered 2D nanostructures in a self-aligned way over a wafer-sized area within several minutes. Moreover, the self-aligned nanostructures can be freely transferred between embossed nanopillars and engraved nanoholes by modulating the excitation intensity of SPPs interference through altering the incident laser energy. The SPL technique exhibits further controllability in the shape, orientation, and period of achievable nanopatterns on a wide range of semiconductors and metals by tuning processing parameters. Nanopatterned films can further act as masks to transfer structures into other bulk materials, as demonstrated in silica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...