Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 978013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046594

RESUMO

Wax coating is an important means to maintain fruit quality and extend fruit shelf life, especially for climacteric fruits, such as apples (Malus domestica). Here, we found that wax coating could inhibit ethylene production, chlorophyll degradation, and carotenoid synthesis, but the molecular mechanism remains unclear. The regulatory mechanism of wax coating on apple fruit ripening was determined by subjecting wax-treated apple fruits to transcriptome analysis. RNA-seq revealed that 1,137 and 1,398 genes were upregulated and downregulated, respectively. These differentially expressed genes (DEGs) were shown to be related to plant hormones, such as ethylene, auxin, abscisic acid, and gibberellin, as well as genes involved in chlorophyll degradation and carotenoid biosynthesis. Moreover, we found that some genes related to the wax synthesis process also showed differential expression after the wax coating treatment. Among the DEGs obtained from RNA-seq analysis, 15 were validated by quantitative RT-PCR, confirming the results from RNA-seq analysis. RNA-seq and qRT-PCR of pear (Pyrus ussuriensis) showed similar changes after wax treatment. Our data suggest that wax coating treatment inhibits fruit ripening through ethylene synthesis and signal transduction, chlorophyll metabolism, and carotenoid synthesis pathways and that waxing inhibits endogenous wax production. These results provide new insights into the inhibition of fruit ripening by wax coating.

2.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012719

RESUMO

Auxin plays an important role in regulating plant development, and Auxin/indole acetic acid (Aux/IAA) is a type of auxin-responsive gene and plays an important role in auxin signaling; to date, although 29 Aux/IAA proteins have been reported in Abrabidopsis thaliana, only parts of the Aux/IAA family gene functions have been identified. We previously reported that a bud sport of 'Longfeng' (LF) apple (Malus domestica), named 'Grand longfeng' (GLF), which showed a larger fruit size than LF, has lower expression of MdAux/IAA2. In this study, we identified the function of the MdAux/IAA2 gene in apple fruit size difference using Agrobacterium-mediated genetic transformation. Overexpression of MdAux/IAA2 decreased the apple flesh callus increment and caused a smaller globular cell size. In addition, overexpression of MdAux/IAA2 in GLF fruit resulted in the reduction of apple fruit size, weight, and cell size, while silencing MdAux/IAA2 in LF apple fruit resulted in an increase in apple fruit weight and cell size. We suggest that the high auxin content depressed the expression of MdAux/IAA2, and that the downregulated expression of MdAux/IAA2 led to the formation of GLF. Our study suggests a mechanism for fruit size regulation in plants and we will explore the transcription factors functioning in this process in the future.


Assuntos
Malus , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...