Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(2): eadk7935, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215195

RESUMO

The intrinsic fast dynamics make antiferromagnetic spintronics a promising avenue for faster data processing. Ultrafast antiferromagnetic resonance-generated spin current provides valuable access to antiferromagnetic spin dynamics. However, the inverse effect, spin-torque-driven antiferromagnetic resonance (ST-AFMR), which is attractive for practical utilization of fast devices but seriously impeded by difficulties in controlling and detecting Néel vectors, remains elusive. We observe ST-AFMR in Y3Fe5O12/α-Fe2O3/Pt at room temperature. The Néel vector oscillates and contributes to voltage signal owing to antiferromagnetic negative spin Hall magnetoresistance-induced spin rectification effect, which has the opposite sign to ferromagnets. The Néel vector in antiferromagnetic α-Fe2O3 is strongly coupled to the magnetization in Y3Fe5O12 buffer, resulting in the convenient control of Néel vectors. ST-AFMR experiment is bolstered by micromagnetic simulations, where both the Néel vector and the canted moment of α-Fe2O3 are in elliptic resonance. These findings shed light on the spin current-induced dynamics in antiferromagnets and represent a step toward electrically controlled antiferromagnetic terahertz emitters.

2.
J Environ Manage ; 345: 118912, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678020

RESUMO

Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.


Assuntos
Aquecimento Global , Microbiota , Mudança Climática , Filtração , Solo
3.
Sci Total Environ ; 892: 164722, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308011

RESUMO

The impact of microbial communities on ecosystem function varies due to the diverse biological attributes and sensitivities exhibited by different taxonomic groups. These groups can be classified as always rare (ART), conditionally rare (CRT), dominant, and total taxa, each affecting ecosystem function in distinct ways. Thus, understanding the functional traits of organisms within these taxa is crucial for comprehending their contributions to overall ecosystem function. In our study, we investigated the influence of climate warming on the biogeochemical cycles of the ecosystem in the Qinghai-Tibet Plateau, utilizing an open top chamber experiment. Simulated warming significantly lowered ecosystem function in the grassland but not in the shrubland. This discrepancy was due to the diverse responses of the various taxa present in each ecosystem to warming conditions and their differing roles in determining and regulating ecosystem function. The microbial maintenance of ecosystem function was primarily reliant on the diversity of bacterial dominant taxa and CRT and was less dependent on ART and fungal taxa. Furthermore, bacterial CRT and dominant taxa of the grassland ecosystem were more sensitive to changing climatic conditions than grassland ART, resulting in a more pronounced negative diversity response. In conclusion, the biological maintenance of ecosystem function during climate warming is dependent on microbiome composition and the functional and response characteristics of the taxa present. Thus, understanding the functional traits and response characteristics of various taxa is crucial for predicting the effects of climate change on ecosystem function and informing ecological reconstruction efforts in alpine regions of the plateau.


Assuntos
Ecossistema , Pradaria , Tibet , Mudança Climática , Bactérias , Solo/química
4.
ACS Appl Mater Interfaces ; 15(1): 1574-1582, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537655

RESUMO

The interaction between transition-metal oxides (TMOs) and protons has become a key issue in magneto-ionics and proton-conducting fuel cells. Until now, most investigations on oxide-proton reactions rely on electrochemical tools, while the direct interplay between protons and oxides remains basically at simple dissolution of metal oxides by an acidic solution. In this work, we find classical TMO brownmillerite SrCoO2.5 (B-SCO) films with ordered oxygen vacancy channels experiencing an interesting transition to a metastable perovskite phase (M-SCO) in a weak acidic solution. M-SCO exhibits a strong ferromagnetism (1.01 µB/Co, Tc > 200 K) and a greatly elevated electrical conductivity (∼104 of pristine SrCoO2.5), which is similar to the prototypical perovskite SrCoO3. Besides, such M-SCO tends to transform back to B-SCO in a vacuum environment or heating at a relatively low temperature. Two possible mechanisms (H2O addition/active oxygen filling) have been proposed to explain the phenomenon, and the control experiments demonstrate that the latter mechanism is the dominant process. Our work finds a new way to realize cobaltite perovskite with enhanced magnetoelectric properties and may deepen the understanding of oxide-proton interaction in an aqueous solution.

5.
Small Methods ; 6(12): e2201048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403249

RESUMO

Introducing chirality into low-dimensional hybrid organic-inorganic halides (HOIHs) creates brand-new opportunities for HOIHs in spintronics and spin-related optoelectronics owing to chirality-induced spin selectivity (CISS). However, preparing smooth films of low-dimensional HOIHs with small roughness is still a great challenge due to the hybrid and complex crystal structure, which severely inhibits their applications in spintronic devices. Exploring new lead-free chiral HOIHs with both efficient spin selectivity and excellent film quality is urgently desired. Here, cobalt-based chiral metal halide crystals (R/S-NEA)2 CoCl4 constructed by 0D [CoCl4 ] tetrahedrons and 1-(1-naphtyl)ethylamine (NEA) are synthesized. The orderly configuration of NEA molecules stabilized by noncovalent CH···π interaction endows (NEA)2 CoCl4 with good film-forming ability. (NEA)2 CoCl4 films exhibit strong chiroptical activity (gCD  ≈ 0.05) and significant spin-polarized transport (CISS efficiency up to 90%). Furthermore, ultrasmooth films (roughness ∼ 0.3 nm) with enhanced crystallinity can be achieved by incorporating tiny amount tris(8-oxoquinoline)aluminum that has analogous conjugated structure to NEA. The realization of highly efficient spin selectivity and sub-nanometer roughness in lead-free chiral halides can boost the practical process of low-dimensional HOIHs in spintronics and other fields.

6.
Nat Commun ; 13(1): 3723, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764620

RESUMO

In conventional ferromagnet/spacer/ferromagnet sandwiches, noncollinear couplings are commonly absent because of the low coupling energy and strong magnetization. For antiferromagnets (AFM), the small net moment can embody a low coupling energy as a sizable coupling field, however, such AFM sandwich structures have been scarcely explored. Here we demonstrate orthogonal interlayer coupling at room temperature in an all-antiferromagnetic junction Fe2O3/Cr2O3/Fe2O3, where the Néel vectors in the top and bottom Fe2O3 layers are strongly orthogonally coupled and the coupling strength is significantly affected by the thickness of the antiferromagnetic Cr2O3 spacer. From the energy and symmetry analysis, the direct coupling via uniform magnetic ordering in Cr2O3 spacer in our junction is excluded. The coupling is proposed to be mediated by the non-uniform domain wall state in the spacer. The strong long-range coupling in an antiferromagnetic junction provides an unexplored approach for designing antiferromagnetic structures and makes it a promising building block for antiferromagnetic devices.

7.
Nano Lett ; 22(12): 4646-4653, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35583209

RESUMO

As the core of spintronics, the transport of spin aims at a low-dissipation data process. The pure spin current transmission carried by magnons in antiferromagnetic insulators is natively endowed with superiority such as long-distance propagation and ultrafast speed. However, the traditional control of magnon transport in an antiferromagnet via a magnetic field or temperature variation adds critical inconvenience to practical applications. Controlling magnon transport by electric methods is a promising way to overcome such embarrassment and to promote the development of energy-efficient antiferromagnetic logic. Here, the experimental realization of an electric field-induced piezoelectric strain-controlled magnon spin current transmission through the antiferromagnetic insulator in the Y3Fe5O12/Cr2O3/Pt trilayer is reported. An efficient and nonvolatile manipulation of magnon propagation/blocking is achieved by changing the relative direction between the Néel vector and spin polarization, which is tuned by ferroelastic strain from the piezoelectric substrate. The piezoelectric strain-controlled antiferromagnetic magnon transport opens an avenue for the exploitation of antiferromagnet-based spin/magnon transistors with ultrahigh energy efficiency.

8.
PeerJ ; 10: e12851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233293

RESUMO

BACKGROUND: The microbial decomposition of soil organic carbon (SOC) is a major source of carbon loss, especially in ecologically fragile regions (e.g., the Tibetan Plateau), which are also affected by global warming and anthropogenic activities (e.g., fertilization). The inherent differences between bacteria and fungi indicate that they are likely to play distinct roles in the above processes. However, there still have been no reports on that, which is restricting our knowledge about the mechanisms underlying SOC decomposition. METHODS: A long-term nitrogen (N) and phosphorus (P) addition field experiment was conducted to assess their effects on soil microbial, fungal, and bacterial respiration (RM, RF, and RB, respectively) and temperature sensitivity (Q10; at 15 °C, 25 °C, and 35 °C) using cycloheximide and streptomycin to inhibit the growth of fungi and bacteria. RESULTS: We found that N suppressed RM and RF at all temperatures, but RB was only suppressed at 15 °C, regardless of the addition of P. The addition of N significantly decreased the ratio of RF/RM at 35 °C, and the combined NP treatment increased the Q10 of RB but not that of RF. Results of the redundancy analysis showed that variations in soil respiration were linked with NO3 --N formation, while the variations in Q10 were linked with SOC complexity. Long-term N addition suppressed RM by the formation of NO3 --N, and this was mediated by fungi rather than bacteria. The contribution of fungi toward SOC decomposition was weakened by N addition and increasing temperatures. Combined NP addition increased the Q10 of RB due to increased SOC complexity. The present study emphasizes the importance of fungi and the soil environment in SOC decomposition. It also highlights that the role of bacteria and SOC quality will be important in the future due to global warming and increasing N deposition.


Assuntos
Nitrogênio , Solo , Tibet , Temperatura , Nitrogênio/farmacologia , Fósforo/farmacologia , Carbono/análise , Microbiologia do Solo , Bactérias , Respiração , Fungos , Fertilização
9.
Nat Commun ; 12(1): 4215, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244506

RESUMO

Negative capacitance effect in ferroelectric materials provides a solution to the energy dissipation problem induced by Boltzmann distribution of electrons in conventional electronics. Here, we discover that besides ferroelectrics, the antiferroelectrics based on Landau switches also have intrinsic negative capacitance effect. We report both the static and transient negative capacitance effect in antiferroelectric PbZrO3 films and reveal its possible physical origin. The capacitance of the capacitor of the PbZrO3 and paraelectric heterostructure is demonstrated to be larger than that of the isolated paraelectric capacitor at room temperature, indicating the existence of the static negative capacitance. The opposite variation trends of the voltage and charge transients in a circuit of the PbZrO3 capacitor in series with an external resistor demonstrate the existence of transient negative capacitance effect. Strikingly, four negative capacitance effects are observed in the antiferroelectric system during one cycle scan of voltage pulses, different from the ferroelectric counterpart with two negative capacitance effects. The polarization vector mapping, electric field and free energy analysis reveal the rich local regions of negative capacitance effect with the negative dP/dE and (δ2G)/(δD2), producing stronger negative capacitance effect. The observation of negative capacitance effect in antiferroelectric films significantly extends the range of its potential application and reduces the power dissipation further.

10.
Sci Total Environ ; 766: 144209, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418253

RESUMO

Sustainable management practices can enhance the capacity and potential for soil carbon (C) sequestration, significantly contributing towards mitigating regional climate change. Here, we investigated how the microbial characteristics of a Pinus tabulaeformis plantation responded to different management practices to identify the role of microbial characteristics in influencing the stability of soil organic carbon (SOC). We chose a Pinus tabulaeformis plantation on the Loess Plateau where forest management practices had been conducted since 1999. Five forest management practices were implemented: two at the forest level (P. tabulaeformis with and without ground litter), and three using different vegetation restoration approaches after clear-cutting (P. tabulaeformis seedlings, abandoned grassland, and natural shrub regeneration). Microbial biomass, soil respiration, microbial community structure, microbial metabolic function, and soil oxidizable organic carbon (OC) fractions were evaluated. Forest management practices changed SOC stability by adjusting the microbial characteristics (e.g. soil microbial community diversity and microbial metabolic function diversity). The result of path analysis was that the direct path coefficient of microbial biomass on soil oxidizable OC fractions was the largest, which was 1.499. Path analysis and redundancy analysis showed that microbial biomass had the largest direct influence on soil oxidizable OC fractions. Compared with other forest management practices, natural shrub regeneration increased the nonlabile carbon fraction by increasing soil microbial characteristics, and contributed the most towards stabilizing SOC, which enhanced the stability of the soil ecosystem on the plateau. In conclusion, microbial biomass was the biggest influence factor of SOC stability. In contrast, the stability of SOC may be most stable in the area of natural shrub regeneration.


Assuntos
Carbono , Pinus , Carbono/análise , China , Ecossistema , Florestas , Solo
11.
ACS Appl Mater Interfaces ; 12(26): 29481-29486, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490665

RESUMO

Conductive bridge random access memory (CBRAM) is one of the most representative emerging nonvolatile memories in virtue of its excellent performance on speed, high-density integration, and power efficiency. Resistive switching behaviors in CBRAM involving the formation/rupture of metallic conductive filaments are dominated by cation migration and redox processes. It is all in the pursuit to decrease the operation current for low-power consumption and to enhance the current compliance-dependent reliability. Here, we propose a novel structure of Pt/TaOx:Ag/TaOx/Pt with nonvolatile switching at ∼1 µA and achieve a five-resistance-state multilevel cell operation under different compliance currents. Different from the nanocone-shaped filaments reported in traditional Ag top electrode devices, cluster-type filaments were captured in our memory devices, explaining the low-operation current-resistive switching behaviors. Meanwhile, Cu-doped counterpart devices also display similar operations. Such memory devices are more inclined to achieve low-power consumption and offer feasibility to large-scale memory crossbar integration.

12.
PeerJ ; 7: e8090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772842

RESUMO

BACKGROUND: The major landscape in the hilly-gully region of the Loess Plateau is greatly affected by vegetation rehabilitation on abandoned cropland. Although many studies have shown that the rehabilitation have greatly improved soil conditions and protected them from erosion, these effectiveness were not always in consensus possibly due to the land type of vegetation or to the rehabilitation time. To close this gap, we conducted a long term experiment as follows. METHODS: In this study, we analysed four land types of vegetation rehabilitation (shrub land, woodland, naturally revegetated grassland, and orchard land) with different rehabilitation times and investigated the mechanical composition and erodibility of the soil. Areas of slope croplandand natural forest were selected as controls. RESULTS: The results showed that soil depth, rehabilitation time and rehabilitation land type had strong impacts on soil mechanical composition, micro-aggregation and erodibility. Following rehabilitation, naturally revegetated grassland and shrub land had lower fractal dimensions of particle size distribution (fractal dimensions of PSD), fractal dimensions of micro-aggregation, and erodibility (K factor) than did cropland. Compared to the positive effects of rehabilitation mainly happened in the topsoil layer at other rehabilitation land type, that of woodland happened in the deeper soil layer. Besides, the indispensable rehabilitation time for the significant improvement of soil condition was shorter at naturally revegetated grassland than that at shrub land and woodland. DISCUSSION: Although rehabilitation time was more influential than was rehabilitation land type or soil depth, the differences among the rehabilitation land types showed that naturally revegetated grassland with native plants is the most time-saving rehabilitation vegetation for the Loess Plateau in the conversion from slope cropland. The success of rehabilitation in this forestry practice was mainly contributed by the suited species of rehabilitation land type to the local climate and soil. Based on the differences of rehabilitation effectiveness resulting from land type, we should be cautious to choose land types for the rehabilitation of soil conditions in the Loess Plateau.

13.
ACS Appl Mater Interfaces ; 11(46): 43344-43350, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31659894

RESUMO

Memtransistor is a multiterminal device combining the concepts of memristor and field-effect transistor with two-dimensional (2D) materials. The gate tunability of resistive switching in 2D memtransistor enables the multifunctional modulation and promising applications in neuromorphic network. However, the tunability of switching ratio in 2D memtransistor remains small and seriously limits its practical application. Here, we investigate a memtransistor based on a 3-layer MoS2 and realize the electric, light, and their combined modulations. In the electric gate mode, switching ratio is tunable in a large scale in the range 100-105. In the light gate mode, a maximum conductance change of 450% can be obtained by increasing the light power. Moreover, the switching ratio can be further improved to ∼106 through a combination of electric and light dual gating. Such a gating effect can be ascribed to the modulation of carrier density in the MoS2 channel. Our work provides a simple approach for achieving a high-performance multifunctional memtransistor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...