Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31143, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813237

RESUMO

In order to investigate the effects of different drying methods on the properties of porous starch. The present study used four drying methods, namely hot air drying (HD), spray drying (SPD), vacuum freeze drying (FD) and supercritical carbon dioxide drying (SCD) to prepare maize and kudzu porous starch. Findings indicated that the physicochemical properties (e.g., morphology, crystallinity, enthalpy value, porosity, surface area and water absorption capacity as well as dye absorption capacity, particle size) of porous starch were significantly affected by the drying method. Compared with other samples, SCD-treated porous starch exhibited the highest surface areas of the starch (2.943 and 3.139 m2/g corresponding to kudzu and maize, respectively), amylose content (22.02 % and 16.85 % corresponding to kudzu and maize, respectively), MB and NR absorption capacity (90.63 %, 100.26 % and 90.63 %, 100.26 %, corresponding to kudzu ad maize, respectively), and thermal stability, whereas HD-treated porous starch showed the highest water-absorption capacity (123.8 % and 131.31 % corresponding to kudzu and maize, respectively). The dye absorption of the maize and kudzu porous starch was positively correlated with surface area, according to Pearson's correlation analysis. Therefore, in this study, our aim was to explore the effects of different drying methods on the Structure and properties of porous starch, and provide reference for selecting the best drying method for its application in different fields.

2.
Front Public Health ; 10: 802386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252088

RESUMO

The nervous system is a sensitive target of electromagnetic radiation (EMR). Chronic microwave exposure can induce cognitive deficits, and 5-HT system is involved in this effect. Genetic polymorphisms lead to individual differences. In this study, we evaluated whether the single-nucleotide polymorphism (SNP) rs198585630 of 5-HT1A receptor is associated with cognitive alterations in rats after microwave exposure with a frequency of 2.856 GHz and an average power density of 30 mW/cm2. Rats were exposed to microwaves for 6 min three times a week for up to 6 weeks. PC12 cells and 293T cells were exposed to microwaves for 5 min up to 3 times at 2 intervals of 5 min. Transcriptional activity of 5-HT1A receptor promoter containing rs198585630 C/T allele was determined in vitro. Electroencephalograms (EEGs), spatial learning and memory, and mRNA and protein expression of 5-HT1A receptor were evaluated in vivo. We demonstrated that transcriptional activity of 5-HT1A receptor promoter containing rs198585630 C allele was higher than that of 5-HT1A receptor promoter containing T allele. The transcriptional activity of 5-HT1A receptor promoter was stimulated by 30 mW/cm2 microwave exposure, and rs198585630 C allele was more sensitive to microwave exposure, as it showed stronger transcriptional activation. Rats carrying rs198585630 C allele exhibited increased mRNA and protein expression of 5-HT1A receptor and were more susceptible to 30 mW/cm2 microwave exposure, showing cognitive deficits and inhibition of brain electrical activity. These findings suggest SNP rs198585630 of the 5-HT1A receptor is an important target for further research exploring the mechanisms of hypersensitivity to microwave exposure.


Assuntos
Micro-Ondas , Receptor 5-HT1A de Serotonina , Animais , Cognição , Micro-Ondas/efeitos adversos , Polimorfismo Genético , Regiões Promotoras Genéticas/genética , RNA Mensageiro , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/genética
3.
Curr Issues Mol Biol ; 44(1): 206-221, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35723394

RESUMO

With the wide application of microwave technology, concerns about its health impact have arisen. The signal transmission mode of the central nervous system and neurons make it particularly sensitive to electromagnetic exposure. It has been reported that abnormal release of amino acid neurotransmitters is mediated by alteration of p-SYN1 after microwave exposure, which results in cognitive dysfunction. As the phosphorylation of SYN1 is regulated by different kinases, in this study we explored the regulatory mechanisms of SYN1 fluctuations following microwave exposure and its subsequent effect on GABA release, aiming to provide clues on the mechanism of cognitive impairment caused by microwave exposure. In vivo studies with Timm and H&E staining were adopted and the results showed abnormality in synapse formation and neuronal structure, explaining the previously-described deficiency in cognitive ability caused by microwave exposure. The observed alterations in SYN1 level, combined with the results of earlier studies, indicate that SYN1 and its phosphorylation status (ser-553 and ser62/67) may play a role in the abnormal release of neurotransmitters. Thus, the role of Cdk5, the upstream kinase regulating the formation of p-SYN1 (ser-553), as well as that of MEK, the regulator of p-SYN1 (ser-62/67), were investigated both in vivo and in vitro. The results showed that Cdk5 was a negative regulator of p-SYN1 (ser-553) and that its up-regulation caused a decrease in GABA release by reducing p-SYN1 (ser-553). While further exploration still needed to elaborate the role of p-SYN1 (ser-62/67) for neurotransmitter release, MEK inhibition had was no impact on p-Erk or p-SYN1 (ser-62/67) after microwave exposure. In conclusion, the decrease of p-SYN1 (ser-553) may result in abnormalities in vesicular anchoring and GABA release, which is caused by increased Cdk5 regulated through Calpain-p25 pathway after 30 mW/cm2 microwave exposure. This study provided a potential new strategy for the prevention and treatment of microwave-induced cognitive dysfunction.

4.
Mol Neurobiol ; 53(4): 2100-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25917873

RESUMO

Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.


Assuntos
Micro-Ondas , Neurônios/patologia , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Sequência de Bases , Encéfalo/patologia , Proliferação de Células , Frequência do Gene/genética , Variação Genética , Genótipo , Masculino , Células PC12 , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar
5.
Pathobiology ; 82(5): 181-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26337368

RESUMO

Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Micro-Ondas/efeitos adversos , Neurônios/efeitos da radiação , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína 4 Homóloga a Disks-Large , Hipocampo/química , Hipocampo/citologia , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Células PC12 , Densidade Pós-Sináptica/efeitos da radiação , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/efeitos da radiação , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais , Transmissão Sináptica/efeitos da radiação
6.
Physiol Behav ; 140: 236-46, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25542888

RESUMO

The increased use of microwaves raises concerns about its impact on health including cognitive function in which neurotransmitter system plays an important role. In this study, we focused on the serotonin system and evaluated the long term effects of chronic microwave radiation on cognition and correlated items. Wistar rats were exposed or sham exposed to 2.856GHz microwaves with the average power density of 5, 10, 20 or 30mW/cm(2) respectively for 6min three times a week up to 6weeks. At different time points after the last exposure, spatial learning and memory function, morphology structure of the hippocampus, electroencephalogram (EEG) and neurotransmitter content (amino acid and monoamine) of rats were tested. Above results raised our interest in serotonin system. Tryptophan hydroxylase 1 (TPH1) and monoamine oxidase (MAO), two important rate-limiting enzymes in serotonin synthesis and metabolic process respectively, were detected. Expressions of serotonin receptors including 5-HT1A, 2A, 2C receptors were measured. We demonstrated that chronic exposure to microwave (2.856GHz, with the average power density of 5, 10, 20 and 30mW/cm(2)) could induce dose-dependent deficit of spatial learning and memory in rats accompanied with inhibition of brain electrical activity, the degeneration of hippocampus neurons, and the disturbance of neurotransmitters, among which the increase of 5-HT occurred as the main long-term change that the decrease of its metabolism partly contributed to. Besides, the variations of 5-HT1AR and 5-HT2CR expressions were also indicated. The results suggested that in the long-term way, chronic microwave exposure could induce cognitive deficit and 5-HT system may be involved in it.


Assuntos
Encéfalo/metabolismo , Encéfalo/efeitos da radiação , Transtornos Cognitivos/etiologia , Micro-Ondas/efeitos adversos , Serotonina/metabolismo , Animais , Encéfalo/patologia , Ondas Encefálicas/efeitos da radiação , Relação Dose-Resposta à Radiação , Eletroencefalografia , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Degeneração Neural/etiologia , Neurotransmissores/metabolismo , Ratos , Ratos Wistar , Tempo de Reação/efeitos da radiação , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Natação/psicologia , Tempo , Fatores de Tempo , Triptofano Hidroxilase/metabolismo
7.
PLoS One ; 9(4): e95503, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743689

RESUMO

BACKGROUND: Abnormal release of neurotransmitters after microwave exposure can cause learning and memory deficits. This study investigated the mechanism of this effect by exploring the potential role of phosphorylated synapsin I (p-Syn I). METHODS: Wistar rats, rat hippocampal synaptosomes, and differentiated (neuronal) PC12 cells were exposed to microwave radiation for 5 min at a mean power density of 30 mW/cm2. Sham group rats, synaptosomes, and cells were otherwise identically treated and acted as controls for all of the following post-exposure analyses. Spatial learning and memory in rats was assessed using the Morris Water Maze (MWM) navigation task. The protein expression and presynaptic distribution of p-Syn I and neurotransmitter transporters were examined via western blotting and immunoelectron microscopy, respectively. Levels amino acid neurotransmitter release from rat hippocampal synaptosomes and PC12 cells were measured using high performance liquid chromatograph (HPLC) at 6 hours after exposure, with or without synapsin I silencing via shRNA transfection. RESULTS: In the rat experiments, there was a decrease in spatial memory performance after microwave exposure. The expression of p-Syn I (ser-553) was decreased at 3 days post-exposure and elevated at later time points. Vesicular GABA transporter (VGAT) was significantly elevated after exposure. The GABA release from synaptosomes was attenuated and p-Syn I (ser-553) and VGAT were both enriched in small clear synaptic vesicles, which abnormally assembled in the presynaptic terminal after exposure. In the PC12 cell experiments, the expression of p-Syn I (ser-553) and GABA release were both attenuated at 6 hours after exposure. Both microwave exposure and p-Syn I silencing reduced GABA release and maximal reduction was found for the combination of the two, indicating a synergetic effect. CONCLUSION: p-Syn I (ser-553) was found to play a key role in the impaired GABA release and cognitive dysfunction that was induced by microwave exposure.


Assuntos
Transtornos da Memória/metabolismo , Micro-Ondas/efeitos adversos , Memória Espacial/fisiologia , Sinapsinas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Masculino , Transtornos da Memória/genética , Células PC12 , Fosforilação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...