Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860501

RESUMO

Disease biomarkers in tears are crucial for clinical diagnosis and health monitoring. However, the limited volume of tear samples, low concentration of tear biomarkers, and complex tear composition present challenges for precise testing. We introduce a spot-on testing platform of metal-organic framework (MOF)-based surface-enhanced Raman scattering (SERS) capillary column, which is capable of target molecules selective separation and enrichment for tear biomarkers in situ detection. It consists of Au nanostars for effective SERS signal and a porous MOF shell for separating impurities through molecular sieving effect. This platform allows for simultaneous collection and detection of tear, capturing the disease biomarker malondialdehyde in tears with a 9.38 × 10-9 mol/L limit of detection. Moreover, we designed a hand-held device based on this tubular SERS sensor, successfully diagnosing patients with dry eye disease. This functional capillary column enables noninvasive and rapid diagnosis of biomarkers in biofluids, providing potential for disease diagnosis and healthcare monitoring.

2.
Adv Mater ; 35(20): e2211578, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880582

RESUMO

Magnetic resonance imaging (MRI) contrast agents, such as Magnevist (Gd-DTPA), are routinely used for detecting tumors at an early stage. However, the rapid clearance by the kidney of Gd-DTPA leads to short blood circulation time, which limits further improvement of the contrast between tumorous and normal tissue. Inspired by the deformability of red blood cells, which improves their blood circulation, this work fabricates a novel MRI contrast agent by incorporating Gd-DTPA into deformable mesoporous organosilica nanoparticles (D-MON). In vivo distribution shows that the novel contrast agent is able to depress rapid clearance by the liver and spleen, and the mean residence time is 20 h longer than Gd-DTPA. Tumor MRI studies demonstrated that the D-MON-based contrast agent is highly enriched in the tumor tissue and achieves prolonged high-contrast imaging. D-MON significantly improves the performance of clinical contrast agent Gd-DTPA, exhibiting good potential in clinical applications.


Assuntos
Meios de Contraste , Nanopartículas , Gadolínio DTPA , Gadolínio , Imageamento por Ressonância Magnética/métodos
3.
Sci Adv ; 8(45): eadd1559, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367933

RESUMO

Hierarchical assemblies of functional nanoparticles can have applications exceeding those of individual constituents. Arranging components in a certain order, even at the atomic scale, can result in emergent effects. We demonstrate that printed atomic ordering is achieved in multiscale hierarchical structures, including nanoparticles, superlattices, and macroarrays. The CsPbBr3 perovskite nanocubes self-assemble into superlattices in ordered arrays controlled across 10 scales. These structures behave as single nanoparticles, with diffraction patterns similar to those of single crystals. The assemblies repeat as two-dimensional planar unit cells, forming crystalline superlattice arrays. The fluorescence intensity of these arrays is 5.2 times higher than those of random aggregate arrays. The multiscale coherent states can be printed on a meter-scale panel as a micropixel light-producing layer of primary-color photon emitters. These hierarchical assemblies can boost the performance of optoelectronic devices and enable the development of high-efficiency, directional quantum light sources.

4.
J Am Chem Soc ; 144(38): 17533-17539, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36000980

RESUMO

The interfacial mass transfer rate of a target has a significant impact on the sensing performance. The surface reaction forms a concentration gradient perpendicular to the surface, wherein a slow mass transfer process decreases the interfacial reaction rate. In this work, we self-assembled gold nanoparticles (AuNPs) in the gap of a SiO2 opal array to form a AuNP-bridge array. The diffusion paths of vertical permeability and a microvortex effect provided by the AuNP-bridge array synergistically improved the target mass transfer efficiency. As a proof of concept, we used DNA hybridization efficiency as a research model, and the surface-enhanced Raman spectroscopy (SERS) signal acted as a readout index. The experimental verification and theoretical simulation show that the AuNP-bridge array exhibited rapid mass transfer and high sensitivity. The DNA hybridization efficiency of the AuNP-bridge array was 15-fold higher than that of the AuNP-planar array. We believe that AuNP-bridge arrays can be potentially applied for screening drug candidates, genetic variations, and disease biomarkers.


Assuntos
Ouro , Nanopartículas Metálicas , Biomarcadores , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício , Análise Espectral Raman/métodos
5.
Adv Sci (Weinh) ; 9(29): e2202644, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981891

RESUMO

Polymeric nanocarriers have a broad range of clinical applications in recent years, but an inefficient delivery of polymeric nanocarriers to target tissues has always been a challenge. These results show that tuning the elasticity of hydrogel nanoparticles (HNPs) improves their delivery efficiency to tumors. Herein, a microfluidic system is constructed to evaluate cellular uptake of HNPs of different elasticity under flow conditions. It is found that soft HNPs are more efficiently taken up by cells than hard HNPs under flow conditions, owing to the greater adhesion between soft HNPs and cells. Furthermore, in vivo imaging reveals that soft HNPs have a more efficient tumor delivery than hard HNPs, and the greater targeting potential of soft HNPs is associated with both prolonged blood circulation and a high extent of cellular adhesion.


Assuntos
Nanopartículas , Neoplasias , Elasticidade , Humanos , Hidrogéis , Polímeros
6.
Small ; 18(29): e2202867, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754302

RESUMO

Photothermal materials can convert renewable solar energy into thermal energy and have great potential for solar water evaporation. Copper sulfide (Cu2- x S) is an easily available and inexpensive plasmonic material with a high photothermal conversion efficiency and can be applied to solar evaporation and water purification. Monodispersed Cu7 S4 nanoparticles (NPs) and supercrystalline self-assembled superparticles are obtained via wet chemical synthesis and micelle self-assembly. The photothermal properties of the superstructures are investigated using the finite difference time domain method and laser radiation photothermography. The results show that the electromagnetic field intensity and photothermal efficiency of the self-assembly are significantly higher than those of isolated NPs, which is due to the plasmonic coupling of the NPs. The evaporation efficiency of the superstructure is significantly higher than that of isolated NPs, the metal salt ion and total organic carbon concentrations in the waterbody significantly decrease after evaporation, and the water polluted by high salt and organic dye concentrations is purified. The water quality significantly improves after the lake water from Fuxian Lake in the Yunnan-Guizhou Plateau of China is used for solar evaporation. The color changes from pale yellow to colorless and the ion and total organic carbon contents significantly decrease.


Assuntos
Energia Solar , Purificação da Água , Carbono , China , Luz Solar , Purificação da Água/métodos
7.
Angew Chem Int Ed Engl ; 61(29): e202205628, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35546068

RESUMO

The detection of biomarkers in tears has aroused great interest owing to the advantages of non-invasive and rapid collection. The combination of ultrasensitivity and label-free detection of surface-enhanced Raman spectroscopy (SERS) sensors is expected to achieve real-time diagnosis in home medical care. However, the surface of SERS sensors is susceptible to biofouling and inactivation by biological impurities in tears, resulting in rapid degradation of sensitivity, limiting the commercialization of point-of-care devices. Herein, a binary nanosphere array with dual properties is constructed as a separation-sensing platform for the diagnosis of target molecules in tears. The upper part of the structure is composed of Au nanoparticles (AuNPs) and a sputtering Au layer, which can bind the target molecules that interact with Au and provide high-strength and high-density SERS hotspots. The lower half is an inactive SiO2 nanosphere array with periodic large pores that allows biological impurities to penetrate the lower part and be separated from the target analyte. Furthermore, this substrate was integrated into homemade tear kits, enabling simultaneous tear collection, pre-separation, and detection. Combined with the Raman spectra of tears and LDA analysis, we successfully identified patients with jaundice in clinics. This platform is expected to provide an opportunity for early disease screening based on biological fluids.


Assuntos
Icterícia , Nanopartículas Metálicas , Ouro/química , Humanos , Nanopartículas Metálicas/química , Dióxido de Silício , Análise Espectral Raman/métodos
8.
Angew Chem Int Ed Engl ; 60(26): 14365-14369, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843116

RESUMO

Molecules in confined spaces exhibit unusual behaviors that are not typically observed in bulk systems. Such behavior can provide alternative strategies for exploring new reaction pathways. Cleavage of the C=N bond of Nile red (NR) in solution is an irreversible reaction. Here, we used spatial confinement within a cationic micelle-confined system to convert this reaction to a reversible process. The fluorescence of NR shifted between red and green for nine cycles. The new chemical pathway based on spatial confinement can be attributed to two factors: increasing the local concentration of reactants and reducing the reaction energy barrier. This effect is supported by both experimental evidence and theoretical calculations. The cross-linked silica shell comprising the confinement chamber stabilizes the enclosed molecules. This reduces fluorophore leakage and maintains fluorescence intensity in most environments, including in solution, on paper, and in hydrogel films, and expands practical applications in encrypted information and multi-informational displays.

9.
Adv Sci (Weinh) ; 7(8): 1903180, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328421

RESUMO

The engineering of metal-organic frameworks (MOFs) into membranes and films is being investigated, to transform laboratory-synthesized MOFs into industrially viable products for a range of attractive applications. However, rational design and construction of highly permeable MOF thin films, without trade-offs in terms of structural mechanical stability, remains a significant challenge. Herein, a simple, general strategy is reported to prepare thin MOF nanosheet (NS)-assembled frame film via heteroepitaxial growth from metal hydroxide film. As the thin MOF NS-assembled film significantly enhances the permeability of mass though the film, the resultant gold nanoparticle (Au NP)@MOF film exhibits much higher catalytic efficiency than the Au NP@MOF bulk film. Meanwhile, the unique framework of the MOF NS-assembled film resists torsion and collapse, so the composite catalyst exhibits long-term stability.

10.
J Am Chem Soc ; 142(4): 1857-1863, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868361

RESUMO

Redesigning heterogeneous catalysts so that they can simultaneously integrate the efficiency and durability under reaction environments with respect to gas fuel production, such as hydrogen (H2), oxygen (O2), or carbon monoxide (CO), has proven challenging. In this work, we report the successful template-assisted printing-based assembly of platinum (Pt) nanoparticles (NPs) into striped-pattern (SP) superlattices to produce H2. In comparison to drop-casting flat Pt NPs films, SP superlattices lead to higher mass transference and smaller bubble stretch force, representing a general strategy to improve the efficiency and durability of pre-existed Pt catalysts for the hydrogen evolution reaction (HER), as well as higher current densities than commercial Pt/C, Pt NP films, and many of the other Pt-based or non-Pt-based HER catalysts reported in the literature. The generic nature of template-assisted printing leads to flexibility in the composition, size, and shape of the constituent NPs or molecules, and thus extends such an accelerated technique for producing the oxygen evolution reaction and electrochemical reduction of CO2 to CO.

11.
Angew Chem Int Ed Engl ; 58(46): 16523-16527, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31487420

RESUMO

To detect biomarkers from human exhalation, air flow dynamics on the nanoparticle surface were explored by a surface-enhanced Raman scattering (SERS) sensor. A hollow Co-Ni layered double hydroxide (LDH) nanocage on Ag nanowires (Ag@LDH) was prepared. Ag nanowires provided amplified Raman signals for trace determination; hollow LDH nanocages served as the gaseous confinement cavity to improve capture and adsorption of gaseous analytes. The Raman intensity and logarithmic analyte concentration exhibit an approximately linear relationship; the detection limit of SERS sensors for aldehyde is 1.9×10-9 v/v (1.9 ppb). Various aldehydes in mixed mimetic gas are distinguished by Raman spectra statistical analysis assisted by multivariate methods, including principal component analysis and hierarchical cluster analysis. The information was recorded in a barcode, which can be used for the design and development of a desktop SERS sensor analysis system for large-scale lung cancer detection.


Assuntos
Hidróxidos/química , Nanoestruturas/química , Nanofios/química , Prata/química , Análise Espectral Raman/métodos , Compostos Orgânicos Voláteis/análise , Benzaldeídos/análise , Biomarcadores Tumorais/análise , Expiração , Gases/química , Humanos , Limite de Detecção , Neoplasias Pulmonares/diagnóstico , Porosidade
12.
Anal Chem ; 91(18): 11840-11847, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31414596

RESUMO

N6-methyladenine (m6A), one of the most common chemical modifications of eukaryotic RNA, participates in many important biological processes. An effective strategy for the quantitative determination of m6A is of great significance. Herein, we used methylated microRNA-21 (miRNA21) as the model target to propose a simple and sensitive electrogenerated chemiluminescence (ECL) biosensing platform to detect a specific m6A RNA sequence. This strategy is based on the fact that the anti-m6A-antibody can specifically recognize and bind to the m6A site in the RNA sequence, resulting in a quenching effect between Ru(bpy)32+-functionalized metal-organic frameworks and ferrocene. Luminescent metal-organic frameworks (Ru@MOFs) not only act as ECL indicators but also serve as nanoreactors for the relative ECL reactions owing to their porous or multichannel structure, which overcomes the fact that Ru(bpy)32+ is easily released when used for aqueous-phase detection, thus enhancing the ECL efficiency. Moreover, the ECL method has fewer modification steps and uses only one antibody to recognize the target RNA sequence, which simplifies the operation process and reduces the detection time, presenting a wide linear range (0.001-10 nM) for m6A RNA determination with a low detection limit (0.0003 nM). Additionally, this developed strategy was validated for m6A RNA detection in human serum. Thus, the ECL biosensing method provides a new method for m6A RNA determination that is simple, highly specific, and sensitive.


Assuntos
Técnicas Biossensoriais/métodos , Compostos Ferrosos/química , Estruturas Metalorgânicas/química , Metalocenos/química , RNA/metabolismo , Rutênio/química , Adenina/metabolismo , Técnicas Biossensoriais/instrumentação , DNA Complementar , Técnicas Eletroquímicas/métodos , Limite de Detecção , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Metilação , MicroRNAs/metabolismo , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Espectroscopia Fotoeletrônica , RNA/análise , Reprodutibilidade dos Testes , Difração de Raios X
13.
Nat Commun ; 10(1): 2779, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31239440

RESUMO

Optimising the supported modes of atom or ion dispersal onto substrates, to synchronously integrate high reactivity and robust stability in catalytic conversion, is an important yet challenging area of research. Here, theoretical calculations first show that three-coordinated copper (Cu) sites have higher activity than four-, two- and one-coordinated sites. A site-selective etching method is then introduced to prepare a stacked-nanosheet metal-organic framework (MOF, CASFZU-1)-based catalyst with precisely controlled coordination number sites on its surface. The turnover frequency value of CASFZU-1 with three-coordinated Cu sites, for cycloaddition reaction of CO2 with epoxides, greatly exceed those of other catalysts reported to date. Five successive catalytic cycles reveal the superior stability of CASFZU-1 in the stacked-nanosheet structure. This study could form a basis for the rational design and construction of highly efficient and robust catalysts in the field of single-atom or ion catalysis.

14.
Chem Commun (Camb) ; 55(7): 965-968, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30605203

RESUMO

Ru nanoparticles doped in carbon foam were encapsulated in nitrogen-doped graphite carbon materials (Ru-NGC). The resultant Ru-NGC possesses superior hydrogen evolution activity with a small onset potential of 9.5 mV and excellent durability due to the optimized Ru electronic state in nitrogen-doped graphite.

15.
Anal Chem ; 91(3): 2418-2424, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30606008

RESUMO

Domoic acid (DA) is a naturally occurring neurotoxin known to bioaccumulate in marine products. Despite its hypertoxicity, the enrichment and analysis of trace DA in complex marine organisms remains a challenge. We describe herein the fabrication of a postsynthetic-modified magnetic zeolite imidazolate framework-8 (Fe3O4 SPs@ZIF-8/Zn2+), based on Fe3O4 superparticles, for the adsorption of DA from complex biological matrices. The adsorption of DA is rapid (∼5 min) and occurs through strong electrostatic interactions and chelation with coordinatively unsaturated zinc sites on the surface of Fe3O4 SPs@ZIF-8/Zn2+. Employing our Fe3O4 SPs@ZIF-8/Zn2+ sorbent in a magnetic solid-phase extraction, followed by liquid chromatographic separation and tandem mass spectrometric detection, resulted in a facile, rapid, efficient, and sensitive method for the enrichment and detection of trace DA in marine products. After optimization, this method yielded satisfactory precision (relative standard deviation ≤3.4%; n = 5) with a high degree of linearity from 1.0 to 1000.0 pg mL-1 ( r2 = 0.9997) and a detection limit of 0.2 pg mL-1 (S/N = 3). Recoveries of 93.1-102.3% were obtained in spiked aquatic products. In addition, trace levels of DA (49.2 pg mL-1) were found in shellfish samples, confirming the applicability of our Fe3O4 SPs@ZIF-8/Zn2+ adsorbent for the detection of DA in seafood.


Assuntos
Imidazóis/química , Ácido Caínico/análogos & derivados , Neurotoxinas/análise , Alimentos Marinhos/análise , Extração em Fase Sólida/métodos , Zeolitas/química , Adsorção , Animais , Astacoidea , Cromatografia Líquida de Alta Pressão , Óxido Ferroso-Férrico/química , Peixes , Contaminação de Alimentos/análise , Ácido Caínico/análise , Ácido Caínico/química , Ácido Caínico/isolamento & purificação , Limite de Detecção , Fenômenos Magnéticos , Estruturas Metalorgânicas/química , Microesferas , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Espectrometria de Massas em Tandem , Zinco/química
16.
Adv Mater ; 31(4): e1804275, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30485559

RESUMO

Although the strength of Raman signals can be increased by many orders of magnitude on noble metal nanoparticles, this enhancement is confined to an extremely short distance from the Raman-active surface. The key to the development of Raman spectroscopy for applications in diagnosis and detection of cancer and inflammatory diseases, and in pharmacology, relies on the capability of detecting analytes that are noninteractive with Raman-active surfaces. Here, a new Raman enhancement system is constructed, superficial-layer-enhanced Raman scattering (SLERS), by covering elongated tetrahexahedral gold nanoparticle arrays with a superficial perovskite (CH3 NH3 PbBr3 ) film. Plasmonic decay is depressed along the vertical direction away from the noble metal surface and the penetration depth is increased in the perovskite media. The vertical penetration of SLERS is verified by the spatial distribution of the analytes via Raman imaging in layer-scanning mode.

17.
Angew Chem Int Ed Engl ; 58(7): 2055-2059, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30569617

RESUMO

A simple method was adopted in which ultrathin cerium oxide nanoplates (<1.4 nm) were synthesized to increase the surface atomic content, allowing transformation from a face-centered cubic (fcc) phase to a body-centered tetragonal (bct) phase. Three types of cerium oxide nanoparticles of different thicknesses (1.2 nm ultrathin nanoplates, 2.2 nm nanoplates, and 5.4 nm nanocubes) were examined using transmission electron microscopy and X-ray diffraction. The metastable bct phase was observed only in ultrathin nanoplates. Thermodynamic energy analysis confirmed that the surface energy of the ultrathin nanoplates is the cause of the remarkable stabilization of the metastable bct phase. The mechanism of surface energy regulation can be expanded to other metallic oxides, thus providing a new means for manipulating and stabilizing novel materials under ambient conditions that otherwise would not be recovered.

18.
Nat Commun ; 9(1): 444, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410412

RESUMO

Bacterial infectious diseases, such as sepsis, can lead to impaired function in the lungs, kidneys, and other vital organs. Although established technologies have been designed for the extracorporeal removal of bacteria, a high flow velocity of the true bloodstream might result in low capture efficiency and prevent the realization of their full clinical potential. Here, we develop a dialyzer made by three-dimensional carbon foam pre-grafted with nanowires to isolate bacteria from unprocessed blood. The tip region of polycrystalline nanowires is bent readily to form three-dimensional nanoclaws when dragged by the molecular force of ligand-receptor, because of a decreasing Young's moduli from the bottom to the tip. The bacterial capture efficiency was improved from ~10% on carbon foam and ~40% on unbendable single-crystalline nanowires/carbon foam to 97% on bendable polycrystalline nanowires/carbon foam in a fluid bloodstream of 10 cm s-1 velocity.


Assuntos
Bactérias/isolamento & purificação , Hemodinâmica , Rins Artificiais , Nanofios , Módulo de Elasticidade , Humanos
19.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226594

RESUMO

Surface enhanced Raman scattering (SERS) is a trace detection technique that extends even to single molecule detection. Its potential application to the noninvasive recognition of lung malignancies by detecting volatile organic compounds (VOCs) that serve as biomarkers would be a breakthrough in early cancer diagnostics. This application, however, is currently limited by two main factors: (1) most VOC biomarkers exhibit only weak Raman scattering; and (2) the high mobility of gaseous molecules results in a low adsorptivity on solid substrates. To enhance the adsorption of gaseous molecules, a ZIF-8 layer is coated onto a self-assembly of gold superparticles (GSPs) in order to slow the flow rate of gaseous biomarkers and depress the exponential decay of the electromagnetic field around the GSP surfaces. Gaseous aldehydes that are released as a result of tumor-specific tissue composition and metabolism, thereby acting as indicators of lung cancer, are guided onto SERS-active GSPs substrates through a ZIF-8 channel. Through a Schiff base reaction with 4-aminothiophenol pregrafted onto gold GSPs, gaseous aldehydes are captured with a 10 ppb limit of detection, demonstrating tremendous prospects for in vitro diagnoses of early stage lung cancer.


Assuntos
Análise Espectral Raman , Biomarcadores Tumorais , Ouro , Nanopartículas Metálicas , Nanotecnologia
20.
Anal Chem ; 89(3): 1416-1420, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28208308

RESUMO

Surface-enhanced Raman scattering (SERS) is expected as a technique that even theoretically detected chemicals at the single molecule level by surface plasmon phenomena of noble metal nanostructures. Insensitivity of detecting Raman weak-intensity molecules and low adsorptivity of gaseous molecules on solid substrates are two main factors hindering the application of SERS in gas detectors. In this manuscript, we demonstrated an operational SERS strategy to detect gaseous Raman weak-intensity aldehydes that have been considered as a biomarker of lung cancer for abnormal content was measured in volatile organic compounds (VOCs) of lung cancer patients. To enhance the adsorption of gaseous molecules, dendritic Ag nanocrystals mimicking the structural feature (dendritic) of moth's antennae were formed, wherein the existence of numerous cavity traps in Ag dendritic nanocrystals prolonged reaction time of the gaseous molecules on the surface of solid surface through the "cavity-vortex" effect. By the nucleophilic addition reaction with the Raman-active probe molecule p-aminothiophenol (4-ATP) pregrafted on dendritic Ag nanocrystals, the gaseous aldehyde molecules were sensitively captured to detect at the ppb (parts per billion) level. Additionally, the sensitivity of this operational SERS strategy to detection of lung cancer biomarkers was not affected by the humidity, which represented a great potential in fast, easy, cost-effective, and noninvasive recognition of lung malignancies.


Assuntos
Aldeídos/análise , Biomarcadores Tumorais/análise , Neoplasias Pulmonares/diagnóstico , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman , Compostos de Anilina/química , Dendrímeros/química , Gases/química , Humanos , Limite de Detecção , Neoplasias Pulmonares/metabolismo , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...