Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(26): 39702-39711, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35106726

RESUMO

When old corrugated cardboard (OCC) is returned to the paper mill for repulping and reuse, the starch, which is added to the paper surface as a reinforcement agent, is dissolved into the pulping wastewater. Most of the OCC pulping wastewater is recycled to save precious water resources; however, during the water recycling process, the accumulation of dissolved starch stimulates microbial reproduction, which causes poor water quality and putrid odor. This problem seriously affects the stability of the papermaking process and product quality. In this study, phosphomolybdic acid (H3PMo12O40, abbreviated as PMo12) was utilized to catalyze the waste starch present in papermaking wastewater to monosaccharides, realizing the resource utilization of waste starch. The results showed that the optimized yield of total reducing sugar (78.68 wt%) and glycolic acid (12.83 wt%) was achieved at 145 °C with 30 wt% PMo12 at pH 2, which is equivalent to 91.51 wt% starch recovered from wastewater for resource utilization. In addition, the regeneration of the reduced PMo12 was realized by applying a potential of 1 V for 2 h. Overall, this study has theoretical significance and potential application value for resource utilization of waste starch in OCC pulping process and cleaner management of OCC waste paper.


Assuntos
Amido , Águas Residuárias , Catálise , Resíduos Industriais/análise , Molibdênio , Ácidos Fosfóricos , Reciclagem
2.
RSC Adv ; 11(49): 30961-30970, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498931

RESUMO

The starch used to enhance the paper surface dissolves in water during the production process and forms pollutants that accumulate in water when old corrugated cardboard (OCC) is returned to a paper mill for pulping and reuse. At present, anaerobic fermentation is widely used in the paper industry to treat starch-containing wastewater, producing biogas energy, or oxidative decomposition, which is a huge waste of valuable starch resources. Phosphomolybdic acid (PMo12) is a highly selective catalyst for the oxidation of carbohydrates; therefore, PMo12 can be envisaged as a suitable catalyst to convert waste starch into glycolic acid, an important high added-value chemical. In this paper, the catalytic oxidation technology of PMo12 was explored to produce glycolic acid from starch contained in OCC papermaking wastewater, and the kinetics and influencing factors of the catalytic oxidation reaction were studied. The results indicated that the PMo12-catalyzed oxidation of starch followed a first-order reaction; the reaction rate constant increased with increasing the temperature, the apparent activation energy of starch to monosaccharide was 104.7 kJ mol-1, the apparent activation energies of starch and monosaccharide to humins were 126.5 and 140.5 kJ mol-1, and the apparent activation energy of monosaccharide to glycolic acid was 117.2 kJ mol-1. The yields of monosaccharide and glycolic acid were 80.7 wt% and 12.9 wt%, respectively, and the utilization of starch resources was about 90.0 wt% under the following reaction conditions: temperature, 145 °C; reaction time, 120 min; pH, 2. Therefore, the feasibility of the PMo12-catalyzed oxidation of starch to produce high value-added glycolic acid is demonstrated, which has theoretical guiding significance and potential application value for the clean production and resource utilization of waste starch in the OCC papermaking process.

3.
Polymers (Basel) ; 11(2)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30960315

RESUMO

Developing economical and sustainable fractionation technology of lignocellulose cell walls is the key to reaping the full benefits of lignocellulosic biomass. This study evaluated the potential of metal chloride-assisted p-toluenesulfonic acid (p-TsOH) hydrolysis at low temperatures and under acid concentration for the co-production of sugars and lignocellulosic nanofibrils (LCNF). The results indicated that three metal chlorides obviously facilitated lignin solubilization, thereby enhancing the enzymatic hydrolysis efficiency and subsequent cellulose nanofibrillation. The CuCl2-assisted hydrotropic pretreatment was most suitable for delignification, resulting in a relatively higher enzymatic hydrolysis efficiency of 53.2%. It was observed that the higher residual lignin absorbed on the fiber surface, which exerted inhibitory effects on the enzymatic hydrolysis, while the lower lignin content substrates resulted in less entangled LCNF with thinner diameters. The metal chloride-assisted rapid and low-temperature fractionation process has a significant potential in achieving the energy-efficient and cost-effective valorization of lignocellulosic biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...