Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 172: 116223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325266

RESUMO

Trichinella spiralis is recognized for its ability to regulate host immune responses. The serine protease inhibitor of T. spiralis (Ts-SPI) participates in T. spiralis-mediated immunoregulatory effects. Studies have shown that helminth therapy exhibits therapeutic effects on metabolic diseases. In addition, we previously found that T. spiralis-derived crude antigens could alleviate diet-induced obesity. Thus, Ts-SPI was hypothesized to alleviate non-alcoholic fatty liver disease (NAFLD). Herein, recombinant Ts-SPI (rTs-SPI) was prepared from the muscle larvae T. spiralis. The relative molecular mass of rTs-SPI was approximately 35,000 Da, and western blot analysis indicated good immunoreactivity. rTs-SPI ameliorated hepatic steatosis, inflammation, and pyroptosis in NAFLD mice, which validated the hypothesis. rTs-SPI also reduced macrophage infiltration, significantly expanded Foxp3+ Treg population, and inactivated TLR4/NF-κB/NLRP3 signaling in the liver. Furthermore, rTs-SPI treatment significantly shifted the gut microbiome structure, with a remarkable increase in beneficial bacteria and reduction in harmful bacteria to improve gut barrier integrity. Finally, Abx-treated mice and FMT confirmed that gut-liver crosstalk contributed to NAFLD improvement after rTs-SPI treatment. Taken together, Taken together, these findings suggest that rTs-SPI exerts therapeutic effects in NAFLD via anti-inflammatory activity and gut-liver crosstalk.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Serpinas , Trichinella spiralis , Animais , Camundongos , Inibidores de Serina Proteinase , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Músculos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
2.
ACS Pharmacol Transl Sci ; 7(2): 432-444, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357280

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a liver disease characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. No approved effective therapeutic medicine is available to date for NAFLD. Helminth therapy is believed to be a novel direction and therapeutic strategy for NAFLD. Our previous study showed that Trichinella spiralis-derived antigens (TsAg) had the potential for partially alleviating obesity via regulating gut microbiota. However, the effect of TsAg on NAFLD remains unclear. In this study, high-fat diet (HFD)-induced model mice were treated with TsAg and microbiota transplantation experiments, and alterations in the pathogenesis of nonalcoholic liver disease were assessed. The results showed that TsAg markedly reduced hepatic steatosis, improved insulin resistance, and regulated the abnormal expression of hepatic lipid-related genes. Of note, TsAg ameliorated hepatic inflammation by decreasing pro-inflammatory TNF-α and IL-1ß, suppressing hepatic macrophage infiltration, as well as promoting M2 macrophage polarization. Moreover, TsAg reversed gut dysbiosis, as especially indicated by an increase in beneficial bacteria (e.g., Akkermansiaceae and Rikenellaceae). Furthermore, our study found that TsAg reduced LPS hepatic translocation and hepatic TLR4/NF-κB signaling, which further contributed to inhibiting hepatic inflammation. In addition, TsAg inhibited hepatic oxidative stress involving Nrf2/NQO-1 signaling. Microbiota transplantation showed that TsAg-altered microbiota is sufficient to confer protection against NAFLD in HFD-induced mice. Overall, these findings suggest that TsAg involving gut-liver axis and Nrf2/NQO-1 signaling is a novel promising candidate for NAFLD treatment. TsAg restores intestinal microbiota and intestinal barrier to inhibit bacteria and LPS translocation into the liver, contributing to reduce inflammation, oxidative stress, and hepatic steatosis in the liver of NAFLD mice. The effects were attributed to, at least in part, the inactivation of NF-κB pathway and the activation of Nrf-2/NQO-1 pathway. This study provides new insights for understanding immune modulation by T. spiralis-derived products as well as the potential application of TsAg as a modality for NAFLD.

3.
Int Immunopharmacol ; 117: 109924, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848791

RESUMO

Obesity, an increasingly prevalent disease worldwide, is accompanied by chronic inflammation and intestinal dysbiosis. Helminth infections have been increasingly proved to exhibit a protective role in several inflammation-associated diseases. Considering the side effects of live parasite therapy, efforts have been made to develop helminth-derived antigens as promising candidates with fewer adverse effects. This study aimed to evaluate the effect and mechanisms of TsAg (T. spiralis-derived antigens) on obesity and the associated inflammation in high-fat diet (HFD)-fed mice. C57BL/6J mice were fed a normal diet or HFD with or without TsAg treatment. The results reported that TsAg treatment alleviated body weight gain and chronic inflammation induced by HFD. In the adipose tissue, TsAg treatment prevented macrophage infiltration, reduced the expression of Th1-type (IFN-γ) and Th17-type (IL-17A) cytokines while upregulating the production of Th2-type (IL-4) cytokines. Furthermore, TsAg treatment enhanced brown adipose tissue activation and energy and lipid metabolism and reduced intestinal dysbiosis, intestinal barrier permeability and LPS/TLR4 axis inflammation. Finally, the protective role of TsAg against obesity was transmissible via the fecal microbiota transplantation approach. For the first time, our findings showed that TsAg alleviated HFD-induced obesity and inflammation via modulation of the gut microbiota and balancing the immune disorders, suggesting that TsAg might be a safer promising therapeutic strategy for obesity.


Assuntos
Dieta Hiperlipídica , Trichinella spiralis , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Inflamação/complicações , Citocinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...