Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 8): 127615, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37879574

RESUMO

Exposure to lead can have harmful effects on the intestines and gut microbiota, leading to toxicity. This study aimed to explore the protective role of Sparassis latifolia polysaccharide (SLP) in safeguarding the intestinal barrier of Kunming mice exposed to lead. The findings indicated that SLP effectively alleviates intestinal lesions, increases the density of cupped cells in the intestine, and reduces inflammation in both serum and the small intestine. Furthermore, SLP maintains the expression of key genes such as ZO-1, Occludin, Claudin-1, Lyz, Ang4, and ZO-2, as well as proteins like claudin-1 and Occludin-1. Furthermore, SLP positively impacts the diversity and richness of microorganisms in the mouse gut microbiota at both the genus and gate levels. It also increases the levels of short-chain fatty acids (SCFAs), including acetic acid, butyric acid, and propionic acid, to varying degrees. In summary, SLP plays a role in alleviating the impaired small intestinal barrier in lead-exposed mice by modulating the intestinal flora, which is consistent with reduced lead absorption. This modulation enhances the integrity of the intestinal barrier, suppresses inflammation, and facilitates the excretion of lead.


Assuntos
Inflamação , Chumbo , Camundongos , Animais , Ocludina/genética , Claudina-1/metabolismo , Chumbo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Mucosa Intestinal/metabolismo
2.
Front Nutr ; 9: 994971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185691

RESUMO

Background: Sparassis latifolia (S. latifolia) is a precious edible fungus with multiple biological activities. To date, no study has been investigated the underlying molecular mechanism of immunoregulation caused by the neutral polysaccharide of S. latifolia. Materials and methods: To investigate immunomodulatory mechanism of S. latifolia neutral polysaccharide (SLNP), SLNP was obtained from S. latifolia and its structure, immune receptors and regulation mechanism were studied. Results: S. latifolia neutral polysaccharide consisted of arabinose, galactose, glucose, xylose, and mannose with a molar ratio of 6:12:63:10:5. SLNP was a pyran polysaccharide with a relative molecular weight of 3.2 × 105 Da. SLNP promoted the proliferation of RAW264.7, which further induced the secretions of nitric oxide, TNF-α, IL-6, and IFN-ß, and upregulated the immune receptor TLR4 expression. Moreover, SLNP increased remarkably the levels of TRAF6, IRF3, JNK, ERK, p38, and p38 mRNA and protein mediated by TLR4. Conclusion: S. latifolia neutral polysaccharide regulated the immune function of RAW264.7 through MyD88-dependent and -independent signaling pathways mediated by TLR4 receptor, which suggests that SLNP is a new immunomodulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...