Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 178(23): 4741-4757, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34378191

RESUMO

BACKGROUND AND PURPOSE: Aberrant lipid metabolism is recognized as a key feature of cancer cells. Our initial research on MS-based analysis of lipids in a multiple myeloma (MM) cell line showed a significant accumulation of lipids in multiple myeloma cells after proteasome inhibition. This finding prompted us to hypothesize that multiple myeloma cell survival depends on the maximal utilization of abnormally accumulated lipids. Therefore, we explored whether lipid metabolism-modulating agents would synergize with proteasome inhibitors. EXPERIMENTAL APPROACH: Lipid accumulation in multiple myeloma cells was measured by MS. Synergism between lipid regulators and proteasome inhibitors was assessed by cell viability and apoptosis. A novel stable derivative of fenofibrate (FCE) was synthesized and used to treat multiple myeloma cells in vitro and in vivo along with the proteasome inhibitor ixazomib. ChIP-seq, western blotting and RT-qPCR were performed to explore the potential mechanism(s) underlying the increase in lipid levels in multiple myeloma cells after proteasome inhibition. KEY RESULTS: Accumulation of lipids in multiple myeloma cells was induced by proteasome inhibition. Lipid-lowering drugs and MG-132 exerted a synergistic effect to kill multiple myeloma cells. FCE showed significant synergistic activity in vitro and in vivo with ixazomib. The abnormal lipid accumulation in multiple myeloma cells that was enhanced by proteasome inhibitors might be due to the elevated SREBP1/2 expression induced by ATF4. CONCLUSIONS AND IMPLICATIONS: Our results provide a proof of principle and support for the further clinical evaluation of the combination of lipid-modulating drugs with proteasome inhibitors in the treatment of multiple myeloma.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Bortezomib/farmacologia , Linhagem Celular Tumoral , Humanos , Metabolismo dos Lipídeos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma/farmacologia
2.
ACS Omega ; 5(9): 4595-4602, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175506

RESUMO

Anethol trithione (ATT) has a wide range of physiological activities, but its use is limited due to its poor water solubility. To improve the solubility of ATT, we synthesized and characterized a novel phosphate prodrug (ATXP) relying on the availability of the hydroxy group in 5-(4-hydroxyphenyl)-3H-1,2-dithiole3-thione (ATX), which was transformed from ATT rapidly and extensively in vivo. Our results showed that ATXP significantly improved drug solubility. ATXP was rapidly converted to ATX and reached a maximum plasma concentration with a T max of approximately 5 min after intravenous (iv) administration. Furthermore, after the oral administration of ATXP, the C max was 3326.30 ± 566.50 ng/mL, which was approximately 5-fold greater than that of the parent drug form, indicating that ATXP has greater absorption than that of ATT. Additionally, the oral phosphate prodrug ATXP increased the ATX in the area under the plasma concentration vs time curves (AUC0-t = 3927.40 ± 321.50 and AUC0-∞ = 4579.0 ± 756.30), making its use in practical applications more meaningful. Finally, compared to the vehicle, ATXP was confirmed to maintain the bioactivity of the parent drug for a significant reduction in infarct volume 24 h after reperfusion. Based on these findings, the phosphate prodrug ATXP is a potentially useful water-soluble prodrug with improved pharmacokinetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...