Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1385992, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952443

RESUMO

Introduction: Weeds are significant factors that detrimentally affect crop health and hinder optimal herbage yield. Rhizosphere microorganisms play crucial roles in plant growth, development, and nutrient uptake. Therefore, research focusing on weed control through the lens of microorganisms has emerged as a prominent area of study. The oil-producing fungus Mortierella, which is known for its numerous agricultural benefits, has garnered significant attention in recent years. Methods: In this study, we conducted inoculation experiments in a controlled artificial culture climate chamber to investigate the effects of differential hormones and differentially expressed genes in the stems and leaves of Digitaria sanguinalis using Liquid Chromatography Tandem Mass Spectrometry and RNA-seq techniques, respectively. Additionally, Pearson's correlation analysis was used to establish correlations between differential hormones and growth indicators of Digitaria sanguinalis. Results and discussion: The results demonstrated that inoculation with Mortierella sp. MXBP304 effectively suppressed aboveground biomass and plant height in Digitaria sanguinalis. Furthermore, there was significant upregulation and downregulation in the expression of genes involved in the synthesis and metabolism of phenylalanine and L-phenylalanine. Conversely, the expression of genes related to tryptophan, L-tryptophan, and indole was significantly downregulated. The addition of Mortierella sp. MXBP304 can influence the gene expression associated with phenylalanine and tryptophan synthesis and metabolism during Digitaria sanguinalis growth, subsequently reducing the relative contents of phenylalanine and tryptophan, thereby directly inhibiting Digitaria sanguinalis growth.

2.
J Environ Manage ; 345: 118771, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591100

RESUMO

Saline-alkali soils constitute a globally important carbon pool that plays a critical role in soil carbon dioxide (CO2) and methane (CH4) fluxes. However, the relative importance of microorganisms in the regulation of CH4 emissions under elevated salinity remains unclear. Here, we report the composition of CH4 production and oxidation microbial communities under five different salinity levels in the Yellow River Delta, China. This study also obtained the gene number of microbial CH4 metabolism via testing the soil metagenomes, and further investigated the key soil factors to determine the regulation mechanism. Spearman correlation analysis showed that the soil electrical conductivity, salt content, and Na+, and SO42- concentrations showed significantly negative correlations with the CO2 and CH4 emission rates, while the NO2--N concentration and NO2-/NO3- ratio showed significantly positive correlations with the CO2 and CH4 emission rates. Metabolic pathway analysis showed that the mcrA gene for CH4 production was highest in low-salinity soils. By contrast, the relative abundances of the fwdA, ftr, mch, and mer genes related to the CO2 pathway increased significantly with rising salinity. Regarding CH4 oxidation processes, the relative abundances of the pmoA, mmoB, and mdh1 genes transferred from CH4 to formaldehyde decreased significantly from the control to the extreme-salinity plot. The greater abundance and rapid increase of methanotrophic bacteria compared with the lower abundance and slow increase in methanogenic archaea communities in saline-alkali soils may have increased CH4 oxidation and reduced CH4 production in this study. Only CO2 emissions positively affected CH4 emissions from low- to medium-salinity soils, while the diversities of CH4 production and oxidation jointly influenced CH4 emissions from medium- to extreme-salinity plots. Hence, future investigations will also explore more metabolic pathways for CH4 emissions from different types of saline-alkali lands and combine the key soil enzymes and regulated biotic or abiotic factors to enrich the CH4 metabolism pathway in saline-alkali soils.


Assuntos
Álcalis , Solo , Dióxido de Carbono/análise , Metagenômica , Dióxido de Nitrogênio/análise , Metano/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...